Superoxide dismutase coding of gene polymorphisms associated with susceptibility to Parkinson's disease.
J Integr Neurosci
; 18(3): 299-303, 2019 Sep 30.
Article
em En
| MEDLINE
| ID: mdl-31601079
Oxidative stress linked to the etiology of Parkinson's disease, which is characterized by chronic and progressive neurodegeneration of dopamine neurons. Superoxide dismutase enzymes (SODs) regarded as the first line of defense against oxidative damage. This study assessed the potential associations of gene polymorphisms in SOD1 (encoding Cu/Zn-SOD), SOD2 (encoding Mn-SOD) and SOD3 (encoding extracellular-SOD) with susceptibility to Parkinson's disease. A case-control study, including Parkinson's disease cases (n = 356) and controls (n = 370). Single nucleotide polymorphisms of SOD1 (rs2070424 A/G), SOD2 (rs4880 T/C) and SOD3 (rs1799895, C/G) were genotyped. Results indicated that AG or GG genotype carriers in SOD1 had a much greater risk of Parkinson's disease compared to corresponding AA genotypes, and allele G carriers had increased risk versus allele A carriers in the single nucleotide polymorphism (rs2070424 A/G) in SOD1. Further, TC or CC genotype carriers in SOD2 had a much higher risk of Parkinson's disease compared with corresponding TT genotypes, and the C carriers had an increased risk over allele T carriers in the single nucleotide polymorphism (rs4880 T/C) in SOD2. Together, carrying allele G in the single nucleotide polymorphism (rs2070424 A/G) in SOD1, or allele C in the single nucleotide polymorphism (rs4880 T/C) in SOD2, enhances genetic susceptibility to Parkinson's disease.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Doença de Parkinson
/
Superóxido Dismutase
/
Predisposição Genética para Doença
/
Superóxido Dismutase-1
Tipo de estudo:
Observational_studies
/
Risk_factors_studies
Limite:
Aged
/
Aged80
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Ano de publicação:
2019
Tipo de documento:
Article