Your browser doesn't support javascript.
loading
A sample-to-answer, portable platform for rapid detection of pathogens with a smartphone interface.
Ma, Yu-Dong; Li, Kuang-Hsien; Chen, Yi-Hong; Lee, Yung-Mao; Chou, Shang-Ta; Lai, Yue-Yuan; Huang, Po-Chiun; Ma, Hsi-Pin; Lee, Gwo-Bin.
Afiliação
  • Ma YD; Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan. gwobin@pme.nthu.edu.tw.
  • Li KH; Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan. hp@ee.nthu.edu.tw.
  • Chen YH; Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan. gwobin@pme.nthu.edu.tw.
  • Lee YM; Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan. hp@ee.nthu.edu.tw.
  • Chou ST; Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan. gwobin@pme.nthu.edu.tw.
  • Lai YY; Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan. gwobin@pme.nthu.edu.tw.
  • Huang PC; Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan. hp@ee.nthu.edu.tw.
  • Ma HP; Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan. hp@ee.nthu.edu.tw.
  • Lee GB; Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan. gwobin@pme.nthu.edu.tw and Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, 30013 Taiwan and Institute of Biomedical Engineering, National Tsing Hua University, Hsi
Lab Chip ; 19(22): 3804-3814, 2019 11 21.
Article em En | MEDLINE | ID: mdl-31620745
Emerging and re-emerging infectious diseases pose global threats to human health. Although several conventional diagnostic methods have been widely adopted in the clinic, the long turn-around times of "gold standard" culture-based techniques, as well as the limited sensitivity of lateral-flow strip assays, thwart medical progress. In this study, a smartphone-controlled, automated, and portable system was developed for rapid molecular diagnosis of pathogens (including viruses and bacteria) via the use of a colorimetric loop-mediated isothermal amplification (LAMP) approach on a passive, self-driven microfluidic device. The system was capable of 1) purifying viral or bacterial samples with specific affinity reagents that had been pre-conjugated to magnetic beads, 2) lysing pathogens at low temperatures, 3) executing isothermal nucleic acid amplification, and 4) quantifying the results of colorimetric assays for detection of pathogens with an integrated color sensor. The entire, 40 min analytical process was automatically performed with a novel punching-press mechanism that could be controlled and monitored by a smartphone. As a proof of concept, the influenza A (H1N1) virus and methicillin-resistant Staphylococcus aureus bacteria were used to characterize and optimize the device, and the limits of detection were experimentally found to be 3.2 × 10-3 hemagglutinating units (HAU) per reaction and 30 colony-forming units (CFU) per reaction, respectively; both such values represent high enough sensitivity for clinical adoption. Moreover, the colorimetric assay could be both qualitative and quantitative for detection of pathogens. This is the first instance of an easy-to-use, automated, and portable system for accurate and sensitive molecular diagnosis of either viruses or bacteria, and it is envisioned that this smartphone-controlled apparatus may serve as a platform for clinical, point-of-care pathogen detection, particularly in resource-limited settings.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bactérias / Vírus / Colorimetria / Smartphone Tipo de estudo: Diagnostic_studies / Qualitative_research Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Bactérias / Vírus / Colorimetria / Smartphone Tipo de estudo: Diagnostic_studies / Qualitative_research Idioma: En Ano de publicação: 2019 Tipo de documento: Article