Your browser doesn't support javascript.
loading
Pass-back chain extension expands multimodular assembly line biosynthesis.
Zhang, Jia Jia; Tang, Xiaoyu; Huan, Tao; Ross, Avena C; Moore, Bradley S.
Afiliação
  • Zhang JJ; Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA.
  • Tang X; Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA.
  • Huan T; Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada.
  • Ross AC; Department of Chemistry, Queen's University, Kingston, Ontario, Canada.
  • Moore BS; Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA. bsmoore@ucsd.edu.
Nat Chem Biol ; 16(1): 42-49, 2020 01.
Article em En | MEDLINE | ID: mdl-31636431
ABSTRACT
Modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) enzymatic assembly lines are large and dynamic protein machines that generally effect a linear sequence of catalytic cycles. Here, we report the heterologous reconstitution and comprehensive characterization of two hybrid NRPS-PKS assembly lines that defy many standard rules of assembly line biosynthesis to generate a large combinatorial library of cyclic lipodepsipeptide protease inhibitors called thalassospiramides. We generate a series of precise domain-inactivating mutations in thalassospiramide assembly lines, and present evidence for an unprecedented biosynthetic model that invokes intermodule substrate activation and tailoring, module skipping and pass-back chain extension, whereby the ability to pass the growing chain back to a preceding module is flexible and substrate driven. Expanding bidirectional intermodule domain interactions could represent a viable mechanism for generating chemical diversity without increasing the size of biosynthetic assembly lines and challenges our understanding of the potential elasticity of multimodular megaenzymes.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peptídeo Sintases / Peptídeos Cíclicos / Família Multigênica Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Peptídeo Sintases / Peptídeos Cíclicos / Família Multigênica Idioma: En Ano de publicação: 2020 Tipo de documento: Article