Glycogen synthetase kinase 3 inhibition drives MIC-A/B to promote cytokine production by human natural killer cells in Dengue virus type 2 infection.
Eur J Immunol
; 50(3): 342-352, 2020 03.
Article
em En
| MEDLINE
| ID: mdl-31743425
Dengue virus (DENV) is the most widespread arbovirus worldwide and is responsible for major outbreaks. The host's immune response plays a crucial role in controlling this infection but might also contribute to the promotion of viral spread and immunopathology. In response to DENV infection, NK cells preferentially produce cytokines and are cytotoxic in the presence of specific antibodies. Here, we identified that DENV-2 inhibits glycogen synthase kinase 3 (GSK-3) activity to subsequently induce MHC class-1-related chain (MIC) A and MIC-B expression and IL-12 production in monocyte-derived DCs, independently of the STAT-3 pathway. The inhibition of GSK-3 by DENV-2 or small molecules induced MIC-A/B expression on monocyte-derived DCs, resulting in autologous NK cells of a specific increase in IFN-γ and TNF-α production, in the absence of direct cytotoxicity. Together, these findings identified GSK-3 as a regulator of MIC-A/B expression and suggested its role in DENV-2 infection to specifically induce cytokine production by NK cells.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Células Matadoras Naturais
/
Antígenos de Histocompatibilidade Classe I
/
Dengue
/
Quinase 3 da Glicogênio Sintase
Tipo de estudo:
Prognostic_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article