Your browser doesn't support javascript.
loading
Engineering yeast phospholipid metabolism for de novo oleoylethanolamide production.
Liu, Yi; Liu, Quanli; Krivoruchko, Anastasia; Khoomrung, Sakda; Nielsen, Jens.
Afiliação
  • Liu Y; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
  • Liu Q; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.
  • Krivoruchko A; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
  • Khoomrung S; Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.
  • Nielsen J; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
Nat Chem Biol ; 16(2): 197-205, 2020 02.
Article em En | MEDLINE | ID: mdl-31844304
Phospholipids, the most abundant membrane lipid components, are crucial in maintaining membrane structures and homeostasis for biofunctions. As a structurally diverse and tightly regulated system involved in multiple organelles, phospholipid metabolism is complicated to manipulate. Thus, repurposing phospholipids for lipid-derived chemical production remains unexplored. Herein, we develop a Saccharomyces cerevisiae platform for de novo production of oleoylethanolamide, a phospholipid derivative with promising pharmacological applications in ameliorating lipid dysfunction and neurobehavioral symptoms. Through deregulation of phospholipid metabolism, screening of biosynthetic enzymes, engineering of subcellular trafficking and process optimization, we could produce oleoylethanolamide at a titer of 8,115.7 µg l-1 and a yield on glucose of 405.8 µg g-1. Our work provides a proof-of-concept study for systemically repurposing phospholipid metabolism for conversion towards value-added biological chemicals, and this multi-faceted framework may shed light on tailoring phospholipid metabolism in other microbial hosts.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fosfolipídeos / Saccharomyces cerevisiae / Ácidos Oleicos / Endocanabinoides / Engenharia Metabólica Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fosfolipídeos / Saccharomyces cerevisiae / Ácidos Oleicos / Endocanabinoides / Engenharia Metabólica Idioma: En Ano de publicação: 2020 Tipo de documento: Article