Your browser doesn't support javascript.
loading
Motion prediction enables simulated MR-imaging of freely moving model organisms.
Reischl, Markus; Jouda, Mazin; MacKinnon, Neil; Fuhrer, Erwin; Bakhtina, Natalia; Bartschat, Andreas; Mikut, Ralf; Korvink, Jan G.
Afiliação
  • Reischl M; Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
  • Jouda M; Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
  • MacKinnon N; Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
  • Fuhrer E; Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
  • Bakhtina N; Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
  • Bartschat A; Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
  • Mikut R; Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
  • Korvink JG; Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
PLoS Comput Biol ; 15(12): e1006997, 2019 12.
Article em En | MEDLINE | ID: mdl-31856159
ABSTRACT
Magnetic resonance tomography typically applies the Fourier transform to k-space signals repeatedly acquired from a frequency encoded spatial region of interest, therefore requiring a stationary object during scanning. Any movement of the object results in phase errors in the recorded signal, leading to deformed images, phantoms, and artifacts, since the encoded information does not originate from the intended region of the object. However, if the type and magnitude of movement is known instantaneously, the scanner or the reconstruction algorithm could be adjusted to compensate for the movement, directly allowing high quality imaging with non-stationary objects. This would be an enormous boon to studies that tie cell metabolomics to spontaneous organism behaviour, eliminating the stress otherwise necessitated by restraining measures such as anesthesia or clamping. In the present theoretical study, we use a phantom of the animal model C. elegans to examine the feasibility to automatically predict its movement and position, and to evaluate the impact of movement prediction, within a sufficiently long time horizon, on image reconstruction. For this purpose, we use automated image processing to annotate body parts in freely moving C. elegans, and predict their path of movement. We further introduce an MRI simulation platform based on bright field videos of the moving worm, combined with a stack of high resolution transmission electron microscope (TEM) slice images as virtual high resolution phantoms. A phantom provides an indication of the spatial distribution of signal-generating nuclei on a particular imaging slice. We show that adjustment of the scanning to the predicted movements strongly reduces distortions in the resulting image, opening the door for implementation in a high-resolution NMR scanner.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article