Your browser doesn't support javascript.
loading
Feasibility of hybrid TomoHelical- and TomoDirect-based volumetric gradient matching technique for total body irradiation.
Hong, Chae-Seon; Kim, Min-Joo; Kim, Jihun; Chang, Kyung Hwan; Park, Kwangwoo; Kim, Dong Wook; Han, Min Cheol; Yoon, Hong In; Kim, Jin Sung; Lee, Ho.
Afiliação
  • Hong CS; Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, South Korea.
  • Kim MJ; Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, South Korea.
  • Kim J; Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, South Korea.
  • Chang KH; Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, South Korea.
  • Park K; Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, South Korea.
  • Kim DW; Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, South Korea.
  • Han MC; Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, South Korea.
  • Yoon HI; Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, South Korea.
  • Kim JS; Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemoon-gu, Seoul, 03722, South Korea. jinsung@yuhs.ac.
  • Lee H; Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-ro, Gangnam-gu, Seoul, 06273, South Korea. holee@yuhs.ac.
Radiat Oncol ; 14(1): 233, 2019 Dec 19.
Article em En | MEDLINE | ID: mdl-31856870
ABSTRACT

BACKGROUND:

Tomotherapy-based total body irradiation (TBI) is performed using the head-first position (HFP) and feet-first position (FFP) due to treatment length exceeding the 135 cm limit. To reduce the dosimetric variation at the match lines, we propose and verify a volumetric gradient matching technique (VGMT) by combining TomoHelical (TH) and TomoDirect (TD) modes.

METHODS:

Two planning CT image sets were acquired with HFP and FFP using 15 × 55 × 18 cm3 of solid water phantom. Planning target volume (PTV) was divided into upper, lower, and gradient volumes. The junction comprised 2-cm thick five and seven gradient volumes (5-GVs and 7-GVs) to create a dose distribution with a gentle slope. TH-IMRT and TD-IMRT plans were generated with 5-GVs and 7-GVs. The setup error in the calculated dose was assessed by shifting dose distribution of the FFP plan by 5, 10, 15, and 20 mm in the longitudinal direction and comparing it with the original. Doses for 95% (D95) and 5% of the PTV (D5) were calculated for all simulated setup error plans. Absolute dose measurements were performed using an ionization chamber in the junction.

RESULTS:

The TH&TD plan produced a linear gradient in junction volume, comparable to that of the TH&TH plan. D5 of the PTV was 110% of the prescribed dose when the FFP plan was shifted 0.7 cm and 1.2 cm in the superior direction for 5-GVs and 7-GVs. D95 of the PTV decreased to < 90% of the prescribed dose when the FF plan was shifted 1.1 cm and 1.3 cm in the inferior direction for 5-GVs and 7-GVs. The absolute measured dose showed a good correlation with the calculated dose in the gradient junction volume. The average percent difference (±SD) in all measured points was - 0.7 ± 1.6%, and the average dose variations between depths was - 0.18 ± 1.07%.

CONCLUSION:

VGMT can create a linear dose gradient across the junction area in both TH&TH and TH&TD and can minimize the dose sensitivity to longitudinal setup errors in tomotherapy-based TBI.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Planejamento da Radioterapia Assistida por Computador / Tomografia Computadorizada por Raios X / Irradiação Corporal Total / Imagens de Fantasmas / Órgãos em Risco Tipo de estudo: Etiology_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Planejamento da Radioterapia Assistida por Computador / Tomografia Computadorizada por Raios X / Irradiação Corporal Total / Imagens de Fantasmas / Órgãos em Risco Tipo de estudo: Etiology_studies Limite: Humans Idioma: En Ano de publicação: 2019 Tipo de documento: Article