Carbon Dioxide and Nitrogen-Modulated Shape Transformation of Chitosan-Based Composite Nanogels.
ACS Omega
; 4(25): 21018-21026, 2019 Dec 17.
Article
em En
| MEDLINE
| ID: mdl-31867493
Chitosan/poly[N-(3-(dimethylamino)propyl)methacrylamide]/poly(acrylic acid) (CS/PDMAPMA/PAA) composite nanogels (CPACNGs) were fabricated in the solution of chitosan by surfactant-free emulsion polymerization. N-(3-(Dimethylamino)propyl)methacrylamide (DMAPMA) and acrylic acid (AA) were initiated by 2,2'-azobis-2-methyl-propanimidamide to graft from the backbone of chitosan. Nanogels were formed by noncovalent forces, including of hydrogen bonds, hydrophobic, and electrostatic interaction. Nanogels were characterized by transmission electron microscopy, scanning electron microscope dynamic light scattering, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometer spectra, and 1H NMR. Spherical nanoparticles were observed in the latex system. Nanogels exhibited an excellent CO2 responsivity and CO2/N2 reversible response and switchability and had a faster response rate. The morphological shape transformation of nanogels was modulated by bubbling with CO2 and N2. The responsive mechanism was explored by determining the pH and electrical conductivity. In addition, nanogels were successfully emulsified by bubbling with CO2, and then a phase transition was achieved by bubbling with N2 in the organic solvent/water mixture.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2019
Tipo de documento:
Article