Heavy metal ions removed from imitating acid mine drainages with a thermoacidophilic archaea: Acidianus manzaensis YN25.
Ecotoxicol Environ Saf
; 190: 110084, 2020 Mar 01.
Article
em En
| MEDLINE
| ID: mdl-31869713
Metals in acid mine drainages (AMD) have posed a great threat to environment, and in situ economic environment-friendly remediation technologies need to be developed. Moreover, the effects of acidophiles on biosorption and migrating behaviors of metals in AMD have not been previously reported. In this study, the extremely thermoacidophilic Archaea, Acidianus manzaensis YN25 (A. manzaensis YN25) was used as a bio-adsorbent to adsorb metals (Cu2+, Ni2+, Cd2+ and Zn2+) from acidic solutions which were taken to imitate AMD. The values of their maximum biosorption capacities at both high (1 mM) and low (0.1 mM) metal concentrations followed the order: Cu2+ > Ni2+ > Cd2+ > Zn2+. With the elevations of temperature and pH value, the adsorption amounts of metals increased. The results also indicated that A. manzaensis YN25 had the highest adsorption affinity to Cu2+ in coexisting system of quaternary metals. Acid-base titration data revealed that carboxyl and phosphoryl groups provided adsorption sites for metals via deprotonation. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) further corroborated that amino played an important role in the biosorption process. The fitted Langmuir model illustrated monolayer adsorption occurring on cell surface. The possible adsorption mechanism of A. manzaensis YN25 mainly involved in electrostatic attraction and complexes formation. This study gives a profound insight into the biosorption behavior of heavy metals in acidic solution by thermoacidophilic Archaea and provides a probable novel strategy for in situ remediation of heavy metals pollution in AMD.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Poluentes Químicos da Água
/
Biodegradação Ambiental
/
Acidianus
/
Mineração
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article