Your browser doesn't support javascript.
loading
A Robust Method Uncovers Significant Context-Specific Heritability in Diverse Complex Traits.
Dahl, Andy; Nguyen, Khiem; Cai, Na; Gandal, Michael J; Flint, Jonathan; Zaitlen, Noah.
Afiliação
  • Dahl A; Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA. Electronic address: andywdahl@gmail.com.
  • Nguyen K; Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA.
  • Cai N; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
  • Gandal MJ; Department of Psychiatry, Semel Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
  • Flint J; Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA.
  • Zaitlen N; Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA. Electronic address: noah.zaitlen@ucsf.edu.
Am J Hum Genet ; 106(1): 71-91, 2020 01 02.
Article em En | MEDLINE | ID: mdl-31901249
Gene-environment interactions (GxE) can be fundamental in applications ranging from functional genomics to precision medicine and is a conjectured source of substantial heritability. However, unbiased methods to profile GxE genome-wide are nascent and, as we show, cannot accommodate general environment variables, modest sample sizes, heterogeneous noise, and binary traits. To address this gap, we propose a simple, unifying mixed model for gene-environment interaction (GxEMM). In simulations and theory, we show that GxEMM can dramatically improve estimates and eliminate false positives when the assumptions of existing methods fail. We apply GxEMM to a range of human and model organism datasets and find broad evidence of context-specific genetic effects, including GxSex, GxAdversity, and GxDisease interactions across thousands of clinical and molecular phenotypes. Overall, GxEMM is broadly applicable for testing and quantifying polygenic interactions, which can be useful for explaining heritability and invaluable for determining biologically relevant environments.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Marcadores Genéticos / Herança Multifatorial / Interação Gene-Ambiente / Transtornos Mentais / Modelos Genéticos Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Adult / Animals / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Marcadores Genéticos / Herança Multifatorial / Interação Gene-Ambiente / Transtornos Mentais / Modelos Genéticos Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Adult / Animals / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2020 Tipo de documento: Article