Your browser doesn't support javascript.
loading
Identification of a novel anthocyanin synthesis pathway in the fungus Aspergillus sydowii H-1.
Bu, Congfan; Zhang, Qian; Zeng, Jie; Cao, Xiyue; Hao, Zhaonan; Qiao, Dairong; Cao, Yi; Xu, Hui.
Afiliação
  • Bu C; Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
  • Zhang Q; Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
  • Zeng J; Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
  • Cao X; Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
  • Hao Z; Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
  • Qiao D; Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China.
  • Cao Y; Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China. geneium@scu.edu.cn.
  • Xu H; Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, People's Republic of China. xuhui_scu@scu.edu.cn.
BMC Genomics ; 21(1): 29, 2020 Jan 08.
Article em En | MEDLINE | ID: mdl-31914922
BACKGROUND: Anthocyanins are common substances with many agro-food industrial applications. However, anthocyanins are generally considered to be found only in natural plants. Our previous study isolated and purified the fungus Aspergillus sydowii H-1, which can produce purple pigments during fermentation. To understand the characteristics of this strain, a transcriptomic and metabolomic comparative analysis was performed with A. sydowii H-1 from the second and eighth days of fermentation, which confer different pigment production. RESULTS: We found five anthocyanins with remarkably different production in A. sydowii H-1 on the eighth day of fermentation compared to the second day of fermentation. LC-MS/MS combined with other characteristics of anthocyanins suggested that the purple pigment contained anthocyanins. A total of 28 transcripts related to the anthocyanin biosynthesis pathway was identified in A. sydowii H-1, and almost all of the identified genes displayed high correlations with the metabolome. Among them, the chalcone synthase gene (CHS) and cinnamate-4-hydroxylase gene (C4H) were only found using the de novo assembly method. Interestingly, the best hits of these two genes belonged to plant species. Finally, we also identified 530 lncRNAs in our datasets, and among them, three lncRNAs targeted the genes related to anthocyanin biosynthesis via cis-regulation, which provided clues for understanding the underlying mechanism of anthocyanin production in fungi. CONCLUSION: We first reported that anthocyanin can be produced in fungus, A. sydowii H-1. Totally, 31 candidate transcripts were identified involved in anthocyanin biosynthesis, in which CHS and C4H, known as the key genes in anthocyanin biosynthesis, were only found in strain H1, which indicated that these two genes may contribute to anthocyanins producing in H-1. This discovery expanded our knowledges of the biosynthesis of anthocyanins and provided a direction for the production of anthocyanin.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Aspergillus / Transcriptoma / Antocianinas Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Aspergillus / Transcriptoma / Antocianinas Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article