Your browser doesn't support javascript.
loading
Characterization of Dinophysis spp. (Dinophyceae, Dinophysiales) from the mid-Atlantic region of the United States1.
Wolny, Jennifer L; Egerton, Todd A; Handy, Sara M; Stutts, Whitney L; Smith, Juliette L; Whereat, Edward B; Bachvaroff, Tsvetan R; Henrichs, Darren W; Campbell, Lisa; Deeds, Jonathan R.
Afiliação
  • Wolny JL; Maryland Department of Natural Resources, Resource Assessment Service, Annapolis, Maryland, 21401, USA.
  • Egerton TA; Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, 23529, USA.
  • Handy SM; Center for Food Safety and Applied Nutrition, Office of Regulatory Science, US Food and Drug Administration, College Park, Maryland, 20740, USA.
  • Stutts WL; Center for Food Safety and Applied Nutrition, Office of Regulatory Science, US Food and Drug Administration, College Park, Maryland, 20740, USA.
  • Smith JL; Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, Virginia, 23062, USA.
  • Whereat EB; College of Earth, Ocean, and Environment, University of Delaware, Lewes, Delaware, 19958, USA.
  • Bachvaroff TR; Institute for Marine and Environmental Technology, University of Maryland Center for Environmental Sciences, Baltimore, Maryland, 21202, USA.
  • Henrichs DW; Department of Oceanography, Texas A&M University, College Station, Texas, 77843, USA.
  • Campbell L; Department of Oceanography, Texas A&M University, College Station, Texas, 77843, USA.
  • Deeds JR; Center for Food Safety and Applied Nutrition, Office of Regulatory Science, US Food and Drug Administration, College Park, Maryland, 20740, USA.
J Phycol ; 56(2): 404-424, 2020 04.
Article em En | MEDLINE | ID: mdl-31926032
Due to the increasing prevalence of Dinophysis spp. and their toxins on every US coast in recent years, the need to identify and monitor for problematic Dinophysis populations has become apparent. Here, we present morphological analyses, using light and scanning electron microscopy, and rDNA sequence analysis, using a ~2-kb sequence of ribosomal ITS1, 5.8S, ITS2, and LSU DNA, of Dinophysis collected in mid-Atlantic estuarine and coastal waters from Virginia to New Jersey to better characterize local populations. In addition, we analyzed for diarrhetic shellfish poisoning (DSP) toxins in water and shellfish samples collected during blooms using liquid-chromatography tandem mass spectrometry and an in vitro protein phosphatase inhibition assay and compared this data to a toxin profile generated from a mid-Atlantic Dinophysis culture. Three distinct morphospecies were documented in mid-Atlantic surface waters: D. acuminata, D. norvegica, and a "small Dinophysis sp." that was morphologically distinct based on multivariate analysis of morphometric data but was genetically consistent with D. acuminata. While mid-Atlantic D. acuminata could not be distinguished from the other species in the D. acuminata-complex (D. ovum from the Gulf of Mexico and D. sacculus from the western Mediterranean Sea) using the molecular markers chosen, it could be distinguished based on morphometrics. Okadaic acid, dinophysistoxin 1, and pectenotoxin 2 were found in filtered water and shellfish samples during Dinophysis blooms in the mid-Atlantic region, as well as in a locally isolated D. acuminata culture. However, DSP toxins exceeded regulatory guidance concentrations only a few times during the study period and only in noncommercial shellfish samples.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dinoflagellida / Toxinas Marinhas Tipo de estudo: Risk_factors_studies País como assunto: America do norte Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dinoflagellida / Toxinas Marinhas Tipo de estudo: Risk_factors_studies País como assunto: America do norte Idioma: En Ano de publicação: 2020 Tipo de documento: Article