Your browser doesn't support javascript.
loading
Model-Informed Artificial Intelligence: Reinforcement Learning for Precision Dosing.
Ribba, Benjamin; Dudal, Sherri; Lavé, Thierry; Peck, Richard W.
Afiliação
  • Ribba B; F. Hoffmann La Roche Ltd., Basel, Switzerland.
  • Dudal S; F. Hoffmann La Roche Ltd., Basel, Switzerland.
  • Lavé T; F. Hoffmann La Roche Ltd., Basel, Switzerland.
  • Peck RW; F. Hoffmann La Roche Ltd., Basel, Switzerland.
Clin Pharmacol Ther ; 107(4): 853-857, 2020 04.
Article em En | MEDLINE | ID: mdl-31955414
The availability of multidimensional data together with the development of modern techniques for data analysis represent an exceptional opportunity for clinical pharmacology. Data science-defined in this special issue as the novel approaches to the collection, aggregation, and analysis of data-can significantly contribute to characterize drug-response variability at the individual level, thus enabling clinical pharmacology to become a critical contributor to personalized healthcare through precision dosing. We propose a minireview of methodologies for achieving precision dosing with a focus on an artificial intelligence technique called reinforcement learning, which is currently used for individualizing dosing regimen in patients with life-threatening diseases. We highlight the interplay of such techniques with conventional pharmacokinetic/pharmacodynamic approaches and discuss applicability in drug research and early development.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Farmacologia Clínica / Reforço Psicológico / Inteligência Artificial / Medicina de Precisão / Aprendizagem / Modelos Teóricos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Farmacologia Clínica / Reforço Psicológico / Inteligência Artificial / Medicina de Precisão / Aprendizagem / Modelos Teóricos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article