Your browser doesn't support javascript.
loading
The Extraction of Ocean Tidal Loading from ASAR Differential Interferograms.
Peng, Wei; Wang, Qijie; Cao, Yunmeng.
Afiliação
  • Peng W; School of Geosciences and Info-Physics, Central South University, Changsha 410083, China.
  • Wang Q; School of Geosciences and Info-Physics, Central South University, Changsha 410083, China.
  • Cao Y; Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Jeddah 23955, Saudi Arabia.
Sensors (Basel) ; 20(3)2020 Jan 23.
Article em En | MEDLINE | ID: mdl-31979225
The spatiotemporal crustal non-tectonic deformation caused by ocean tidal loading (OTL) can reach the centimeters scale in coastal land areas. The temporal variation of the site OTL displacements can be estimated by the global positioning system (GPS) technique, but its spatial variation needs to be further determined. In this paper, in order to analyze the spatial characteristics of the OTL displacements, we propose a multi-scale decomposition method based on signal spatial characteristics to derive the OTL displacements from differential interferometric synthetic aperture radar (D-InSAR) measurements. The method was tested using long-term advanced synthetic aperture radar (ASAR) data and GPS reference site data from the Los Angeles Basin in the United States, and we compared the results with the FES2014b tide model. The experimental results showed that the spatial function of the OTL displacements in an ASAR image can be represented as a higher-order polynomial function, and the spatial trends of the OTL displacements determined by the InSAR and the GPS techniques are basically consistent with the FES2014b tide model. The root-mean-square errors of the differences between the spatial OTL displacements of these two methods and the FES2014b tide model are less than 0.8 mm. The results indicate that the OTL displacement extracted from InSAR data can accurately reflect the spatial characteristics of the OTL effect, which will help to improve the spatial resolution and accuracy of the OTL displacement in coastal areas.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article