Genotoxic evaluation of occupational exposure to antineoplastic drugs.
Toxicol Res
; 36(1): 29-36, 2020 Jan.
Article
em En
| MEDLINE
| ID: mdl-31998624
During the last years, several reports have provided evidence about adverse health effects on personal involved in Antineoplastic Drugs (ANPD) handling. ANPD has the ability to bind DNA, thus produce genotoxic damage. In this way, XRCC1 and XRCC3 proteins are necessary for efficient DNA repair and polymorphisms in this genes can be associated with an individual response to ANPD exposure. Therefore, the aim of this study was to evaluate genetic damage of occupational exposure to antineoplastic drugs and the possible effect of XRCC1 and XRCC3 polymorphisms in oncology employees from Bogotá, Colombia. Peripheral blood samples were obtained from 80 individuals, among exposed workers and healthy controls. The comet assay and Cytokinesis-block micronucleus cytome assay was performed to determinate genetic damage. From every sample DNA was isolated and genotyping for XRCC1 (Arg194Trp, Arg280His and Arg399Gln) and XRCC3 (Thr241Met) SNPs by PCR-RFLP. The exposed group showed a significant increase of comet assay results and micronucleus frequency, compared with unexposed group. It was observed a gender, exposure time and workplace effect on comet assay results. Our results showed no significant associations of comet assay results and micronucleus frequency with either genotype, allele, nor haplotype of XRCC1 and XRCC3 SNPs. The results suggest that occupational exposure to ANPD may lead to genotoxic damage and even be a risk to human health. To our knowledge, this is the first study to assess the genotoxic damage of occupational exposure to APND in South America.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article