Your browser doesn't support javascript.
loading
Stabilizing cardiac ryanodine receptor prevents the development of cardiac dysfunction and lethal arrhythmia in Ca2+/calmodulin-dependent protein kinase IIδc transgenic mice.
Sufu-Shimizu, Yoko; Okuda, Shinichi; Kato, Takayoshi; Nishimura, Shigehiko; Uchinoumi, Hitoshi; Oda, Tetsuro; Kobayashi, Shigeki; Yamamoto, Takeshi; Yano, Masafumi.
Afiliação
  • Sufu-Shimizu Y; Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
  • Okuda S; Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan. Electronic address: sokuda@yamaguchi-u.ac.jp.
  • Kato T; Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
  • Nishimura S; Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
  • Uchinoumi H; Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
  • Oda T; Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
  • Kobayashi S; Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
  • Yamamoto T; Department of Clinical Laboratory Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
  • Yano M; Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
Biochem Biophys Res Commun ; 524(2): 431-438, 2020 04 02.
Article em En | MEDLINE | ID: mdl-32007269
ABSTRACT

AIMS:

Ca2+/calmodulin-dependent protein kinase II (CaMKII) has been shown to induce aberrant Ca2+ release from the cardiac ryanodine receptor (RyR2) in various diseased hearts. However, the precise pathogenic mechanism remains to be elucidated. Here, we investigated the effect of dantrolene (DAN) a RyR2 stabilizer on local Ca2+ release, cardiac function, and lethal arrhythmia in CaMKIIδc transgenic (TG) mice. METHODS AND

RESULTS:

The TG mice showed an increase in left ventricular end-diastolic diameter (LVEDD) and left ventricular end-systolic diameter (LVESD) with a reduction in LV fractional shortening (LVFS). The phosphorylation levels of Ser2814 in RyR2 and Thr287 in CaMKII increased in TG mice. In TG cardiomyocytes, peak cell shortening (CS) decreased, and the frequency of spontaneous Ca2+ transients (sCaTs) increased. Endogenous RyR2-associated calmodulin (CaM) markedly decreased in TG cardiomyocytes. After chronic DAN treatment for 1 month, LVESD (but not LVEDD) decreased with an increase in LVFS. In the chronic DAN-treated cardiomyocytes, CS increased, sCaTs decreased, and the endogenous CaM binding to RyR2 normally restored. The phosphorylation levels of Ser2814 in RyR2 and Thr287 in CaMKII remained elevated even after DAN treatment. Moreover, in TG mice, chronic DAN treatment prevented sustained ventricular tachycardia induced by epinephrine.

CONCLUSIONS:

Defective association of CaM with RyR2 is most likely to be involved in the pathogenesis of CaMKII-mediated cardiac dysfunction and lethal arrhythmia.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arritmias Cardíacas / Canal de Liberação de Cálcio do Receptor de Rianodina / Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina / Coração Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Arritmias Cardíacas / Canal de Liberação de Cálcio do Receptor de Rianodina / Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina / Coração Limite: Animals Idioma: En Ano de publicação: 2020 Tipo de documento: Article