Effect of surface chemistry on hMSC growth under xeno-free conditions.
Colloids Surf B Biointerfaces
; 189: 110836, 2020 May.
Article
em En
| MEDLINE
| ID: mdl-32066089
Human mesenchymal stem/stromal cells (hMSC) are promising therapeutic agents for regenerative medicine. However, therapeutic doses necessary for clinical application require in vitro expansion, ideally under Xeno-Free (XF) conditions to avoid the use of foetal bovine serum (FBS). We previously reported that hMSCs could be expanded using a pharmaceutical-grade human plasma-derived supplement for cell culture (SCC, Plastem®) combined with bFGF and TGFß1, on fibronectin (Fn)-coated surfaces. hMSCs expansion may also be affected by the chemistry of the culture surface, which modulates protein adsorption at the cell-material interface and, consequently, cell behavior. This work aimed to evaluate the effect of surface chemistry on hMSCs behavior in SCC-based XF media. For that, self-assembled monolayers (SAMs) with hydrophobic (-CH3) and hydrophilic (neutral -OH, positively charged -NH3+ and negatively charged -COO-) groups were used as model surfaces. Under XF conditions, Fn coating showed to be necessary to improve hMSC adhesion (4 h) onto all surfaces, except for OH-SAMs, probably due to a low protein adsorption capacity characteristic of this surface. In terms of cell metabolic activity (5 days) on Fn-coated surfaces, an increase over time under XF conditions was observed in all SAMs except in CH3-SAMs, which can be attributed to strong and irreversible protein adsorption characteristic of hydrophobic surfaces. This trend was also observed under FBS conditions. Nevertheless, none of the surfaces improved hMSC metabolic activity, as compared with tissue-cultured surfaces. Overall, this work describes the role of surface chemistry in XF hMSC expansion.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Células-Tronco Mesenquimais
Tipo de estudo:
Prognostic_studies
Limite:
Adult
/
Humans
/
Male
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article