Your browser doesn't support javascript.
loading
Fibroblast growth factor-inducible 14 mediates macrophage infiltration in heart to promote pressure overload-induced cardiac dysfunction.
Unudurthi, Sathya D; Nassal, Drew M; Patel, Nehal J; Thomas, Evelyn; Yu, Jane; Pierson, Curtis G; Bansal, Shyam S; Mohler, Peter J; Hund, Thomas J.
Afiliação
  • Unudurthi SD; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA. Electronic address: u
  • Nassal DM; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA.
  • Patel NJ; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA.
  • Thomas E; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA.
  • Yu J; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA.
  • Pierson CG; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA.
  • Bansal SS; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology & Cell Biology, USA.
  • Mohler PJ; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology & Cell Biology, USA; Department of Internal Medicine, The Ohio State University Wexner Medical Cente
  • Hund TJ; The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, USA; Department of Interna
Life Sci ; 247: 117440, 2020 Apr 15.
Article em En | MEDLINE | ID: mdl-32070706
AIMS: Heart failure (HF) is characterized by compromised cardiac structure and function. Previous work has identified a link between upregulation of pro-inflammatory cytokines and HF. Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a pro-inflammatory cytokine, which binds to fibroblast growth factor inducible 14 (Fn14), a ubiquitously expressed cell-surface receptor. The objective of this study was to investigate the role of TWEAK/Fn14 pathway in promoting cardiac inflammation under non ischemic stress conditions. MAIN METHODS: Wild type (WT) and Fn14 knock out (Fn14-/-) mice were subjected to pressure overload [transaortic constriction (TAC)] for 1 or 6 weeks. A subset of WT TAC animals were treated with the Fn14 antagonist L524-0366. Cardiac function was measured by echocardiography. Cardiac fibrosis and macrophage infiltration were quantified using immunohistochemistry and flow cytometry, respectively. Cardiac fibroblasts were isolated for quantifying TWEAK-induced chemokine release. KEY FINDINGS: Fn14-/- mice displayed improved cardiac function, reduced fibrosis and lower macrophage infiltration in heart compared to WT following TAC. L524-0366 mitigated maladaptive remodeling with TAC. TWEAK induced secretion of the pro-inflammatory chemokine, monocyte chemoattractant protein 1 from WT but not Fn14-/- fibroblasts in vitro, in part through activation of non-canonical NF-κB signaling. Finally, Fn14 expression was increased in mouse following TAC and in human failing hearts. SIGNIFICANCE: Our findings support an important role for the TWEAK/Fn14 promoting macrophage infiltration and fibrosis in heart under non-ischemic stress, with potential for therapeutic intervention to improve cardiac function in the setting of HF.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pressão Sanguínea / Fatores de Crescimento de Fibroblastos / Insuficiência Cardíaca / Macrófagos Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans / Male Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Pressão Sanguínea / Fatores de Crescimento de Fibroblastos / Insuficiência Cardíaca / Macrófagos Tipo de estudo: Prognostic_studies Limite: Animals / Female / Humans / Male Idioma: En Ano de publicação: 2020 Tipo de documento: Article