Your browser doesn't support javascript.
loading
Tandem Mach Zehnder Directional Coupler Design and Simulation on Silicon Platform for Optical Coherence Tomography Applications.
Lu, Yi-Ting; Widhianto, Benedictus Yohanes Bagus; Hsu, Shih-Hsiang; Chang, Che-Chang.
Afiliação
  • Lu YT; Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
  • Widhianto BYB; Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
  • Hsu SH; Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
  • Chang CC; Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
Sensors (Basel) ; 20(4)2020 Feb 15.
Article em En | MEDLINE | ID: mdl-32075261
We design and compare the splitting ratio wavelength flatness of directional coupler (DC), Mach-Zehnder directional coupler (MZDC), and tandem MZDC. All coupler responses are analyzed, and tandem MZDC performance is the best in the wavelength insensitivity compared with the other two. An MZDC with any coupling ratio could be utilized to match the maximum flatness in a 40-nm wavelength range. To extend a broad flatness range, the tandem MZDC is proposed and still follows the Mach Zehnder structure taking two MZDCs as couplers connected through a decoupled region. Unlike DC, MZDC with the flat wavelength response has a non-linear output phase. Hence, using two wavelength-insensitive MZDCs as the coupling function in a tandem MZDC could demonstrate a more extensive decoupled phase term to maximize the flat wavelength response. The tandem MZDC theoretically demonstrates the splitting ratio with 100-nm flatness in the wavelength range from 1250 nm to 1350 nm. Finally, a point spread function through the tandem MZDC shows a 24-dB signal-to-noise ratio improvement in optical coherence tomography applications.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article