Your browser doesn't support javascript.
loading
The Maximum Caliber Variational Principle for Nonequilibria.
Ghosh, Kingshuk; Dixit, Purushottam D; Agozzino, Luca; Dill, Ken A.
Afiliação
  • Ghosh K; Department of Physics and Astronomy, University of Denver, Denver, Colorado 80209, USA; email: kghosh@du.edu.
  • Dixit PD; Department of Systems Biology, Columbia University, New York, NY 10032, USA.
  • Agozzino L; Department of Physics, University of Florida, Gainesville, Florida 32611, USA; email: pdixit@ufl.edu.
  • Dill KA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York 11794, USA; email: dill@laufercenter.org.
Annu Rev Phys Chem ; 71: 213-238, 2020 04 20.
Article em En | MEDLINE | ID: mdl-32075515
Ever since Clausius in 1865 and Boltzmann in 1877, the concepts of entropy and of its maximization have been the foundations for predicting how material equilibria derive from microscopic properties. But, despite much work, there has been no equally satisfactory general variational principle for nonequilibrium situations. However, in 1980, a new avenue was opened by E.T. Jaynes and by Shore and Johnson. We review here maximum caliber, which is a maximum-entropy-like principle that can infer distributions of flows over pathways, given dynamical constraints. This approach is providing new insights, particularly into few-particle complex systems, such as gene circuits, protein conformational reaction coordinates, network traffic, bird flocking, cell motility, and neuronal firing.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: DNA / Proteínas / Redes Reguladoras de Genes / Modelos Teóricos Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: DNA / Proteínas / Redes Reguladoras de Genes / Modelos Teóricos Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article