Probing the Local Nanoscale Heating Mechanism of a Magnetic Core in Mesoporous Silica Drug-Delivery Nanoparticles Using Fluorescence Depolarization.
J Am Chem Soc
; 142(11): 5212-5220, 2020 03 18.
Article
em En
| MEDLINE
| ID: mdl-32091888
In the presence of an alternating magnetic field (AMF), a superparamagnetic iron oxide nanoparticle (SPION) generates heat. Understanding the local heating mechanism of a SPION in suspension and in a mesoporous silica nanoparticle (MSN) will advance the design of hyperthermia-based nanotheranostics and AMF-stimulated drug delivery in biomedical applications. The AMF-induced heating of single-domain SPION can be explained by the Néel relaxation (reorientation of the magnetization) or the Brownian relaxation (motion of the particle). The latter is investigated using fluorescence depolarization based on detecting the mobility-dependent polarization anisotropy (r) of two luminescence emission bands at different wavelengths corresponded to the europium-doped luminescent SPION (EuSPION) core and the silica-based intrinsically emitting shell of the core-shell MSN. The fluorescence depolarization experiments are carried out with both the free and the silica-encapsulated SPION nanoparticles with and without application of the AMF. The r value of a EuSPION core-mesoporous silica shell in the presence of the AMF does not change, indicating that no additional rotational motion of the core-shell nanoparticles is induced by the AMF, disproving the contribution of Brownian heating and thus supporting Néel relaxation as the dominant heating mechanism.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Portadores de Fármacos
/
Dióxido de Silício
/
Nanopartículas de Magnetita
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article