Your browser doesn't support javascript.
loading
Ensemble learning for classifying single-cell data and projection across reference atlases.
Wang, Lin; Catalan, Francisca; Shamardani, Karin; Babikir, Husam; Diaz, Aaron.
Afiliação
  • Wang L; Department of Neurosurgery, University of California, San Francisco, CA 94158, USA.
  • Catalan F; Department of Neurosurgery, University of California, San Francisco, CA 94158, USA.
  • Shamardani K; Department of Neurosurgery, University of California, San Francisco, CA 94158, USA.
  • Diaz A; Department of Neurosurgery, University of California, San Francisco, CA 94158, USA.
Bioinformatics ; 36(11): 3585-3587, 2020 06 01.
Article em En | MEDLINE | ID: mdl-32105316
SUMMARY: Single-cell data are being generated at an accelerating pace. How best to project data across single-cell atlases is an open problem. We developed a boosted learner that overcomes the greatest challenge with status quo classifiers: low sensitivity, especially when dealing with rare cell types. By comparing novel and published data from distinct scRNA-seq modalities that were acquired from the same tissues, we show that this approach preserves cell-type labels when mapping across diverse platforms. AVAILABILITY AND IMPLEMENTATION: https://github.com/diazlab/ELSA. CONTACT: aaron.diaz@ucsf.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Perfilação da Expressão Gênica Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Software / Perfilação da Expressão Gênica Idioma: En Ano de publicação: 2020 Tipo de documento: Article