Ensemble learning for classifying single-cell data and projection across reference atlases.
Bioinformatics
; 36(11): 3585-3587, 2020 06 01.
Article
em En
| MEDLINE
| ID: mdl-32105316
SUMMARY: Single-cell data are being generated at an accelerating pace. How best to project data across single-cell atlases is an open problem. We developed a boosted learner that overcomes the greatest challenge with status quo classifiers: low sensitivity, especially when dealing with rare cell types. By comparing novel and published data from distinct scRNA-seq modalities that were acquired from the same tissues, we show that this approach preserves cell-type labels when mapping across diverse platforms. AVAILABILITY AND IMPLEMENTATION: https://github.com/diazlab/ELSA. CONTACT: aaron.diaz@ucsf.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Software
/
Perfilação da Expressão Gênica
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article