Your browser doesn't support javascript.
loading
Investigation of Primary and Secondary Particulate Brown Carbon in Two Chinese Cities of Xi'an and Hong Kong in Wintertime.
Zhang, Qian; Shen, Zhenxing; Zhang, Leiming; Zeng, Yaling; Ning, Zhi; Zhang, Tian; Lei, Yali; Wang, Qiyuan; Li, Guohui; Sun, Jian; Westerdahl, Dane; Xu, Hongmei; Cao, Junji.
Afiliação
  • Zhang Q; Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
  • Shen Z; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
  • Zhang L; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
  • Zeng Y; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
  • Ning Z; Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Canada.
  • Zhang T; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
  • Lei Y; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, China.
  • Wang Q; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
  • Li G; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
  • Sun J; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
  • Westerdahl D; Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
  • Xu H; Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
  • Cao J; Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong, China.
Environ Sci Technol ; 54(7): 3803-3813, 2020 04 07.
Article em En | MEDLINE | ID: mdl-32150391
ABSTRACT
Brown carbon (BrC), an aerosol carbonaceous matter component, impacts atmospheric radiation and global climate because of its absorption in the near-ultraviolet-visible region. Simultaneous air sampling was conducted in two megacities of Xi'an (northern) and Hong Kong (southern) in China in winter of 2016-2017. The aim of this study is to determine and characterize the BrC compounds in collected filter samples. Characteristic absorption peaks corresponding to aromatic C-C stretching bands, organo-nitrates, and C═O functional groups were seen in spectra of Xi'an samples, suggesting that the BrC was derived from freshly smoldering biomass and coal combustion as well as aqueous formation of anthropogenic secondary organic carbon. In Hong Kong, the light absorption of secondary BrC accounted for 76% of the total absorbances of BrC. The high abundance of strong C═O groups, biogenic volatile organic compounds (BVOCs) and atmospheric oxidants suggest secondary BrC was likely formed from photochemical oxidation of BVOCs in Hong Kong. Several representative BrC molecular markers were detected using Fourier transform ion cyclotron resonance mass spectrometry and their absorption properties were simulated by quantum chemistry. The results demonstrate that light absorption capacities of secondary anthropogenic BrC with nitro-functional groups were stronger than those of biogenic secondary BrC and anthropogenic primary BrC.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carbono / Poluentes Atmosféricos País como assunto: Asia Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carbono / Poluentes Atmosféricos País como assunto: Asia Idioma: En Ano de publicação: 2020 Tipo de documento: Article