Your browser doesn't support javascript.
loading
On the Trail of Tetu1: Genome-Wide Discovery of CACTA Transposable Elements in Sunflower Genome.
Ventimiglia, Maria; Pugliesi, Claudio; Vangelisti, Alberto; Usai, Gabriele; Giordani, Tommaso; Natali, Lucia; Cavallini, Andrea; Mascagni, Flavia.
Afiliação
  • Ventimiglia M; Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
  • Pugliesi C; Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
  • Vangelisti A; Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
  • Usai G; Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
  • Giordani T; Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
  • Natali L; Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
  • Cavallini A; Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
  • Mascagni F; Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124 Pisa, Italy.
Int J Mol Sci ; 21(6)2020 Mar 16.
Article em En | MEDLINE | ID: mdl-32188063
ABSTRACT
Much has been said about sunflower (Helianthus annuus L.) retrotransposons, representing the majority of the sunflower's repetitive component. By contrast, class II transposons remained poorly described within this species, as they present low sequence conservation and are mostly lacking coding domains, making the identification and characterization of these transposable elements difficult. The transposable element Tetu1, is a non-autonomous CACTA-like element that has been detected in the coding region of a CYCLOIDEA (CYC) gene of a sunflower mutant, tubular ray flower (turf). Based on our knowledge of Tetu1, the publicly available genome of sunflower was fully scanned. A combination of bioinformatics analyses led to the discovery of 707 putative CACTA sequences 84 elements with complete ends and 623 truncated elements. A detailed characterization of the identified elements allowed further classification into three subgroups of 347 elements on the base of their terminal repeat sequences. Only 39 encode a protein similar to known transposases (TPase), with 10 TPase sequences showing signals of activation. Finally, an analysis of the proximity of CACTA transposons to sunflower genes showed that the majority of CACTA elements are close to the nearest gene, whereas a relevant fraction resides within gene-encoding sequences, likely interfering with sunflower genome functionality and organization.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Elementos de DNA Transponíveis / Genes de Plantas / Helianthus Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Elementos de DNA Transponíveis / Genes de Plantas / Helianthus Idioma: En Ano de publicação: 2020 Tipo de documento: Article