Your browser doesn't support javascript.
loading
Stimuli-Responsive Actuator Fabricated by Dynamic Asymmetric Femtosecond Bessel Beam for In Situ Particle and Cell Manipulation.
Li, Rui; Jin, Dongdong; Pan, Deng; Ji, Shengyun; Xin, Chen; Liu, Guangli; Fan, Shengying; Wu, Hao; Li, Jiawen; Hu, Yanlei; Wu, Dong; Zhang, Li; Chu, Jiaru.
Afiliação
  • Li R; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
  • Jin D; Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China.
  • Pan D; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
  • Ji S; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
  • Xin C; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
  • Liu G; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
  • Fan S; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
  • Wu H; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
  • Li J; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
  • Hu Y; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
  • Wu D; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
  • Zhang L; Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China.
  • Chu J; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
ACS Nano ; 14(5): 5233-5242, 2020 05 26.
Article em En | MEDLINE | ID: mdl-32195582
ABSTRACT
Microscale intelligent actuators capable of sensitive and accurate manipulation under external stimuli hold great promise in various fields including precision sensors and biomedical devices. Current microactuators, however, are often limited to a multiple-step fabrication process and multimaterials. Here, a pH-triggered soft microactuator (<100 µm) with simple structure, one-step fabrication process, and single material is proposed, which is composed of deformable hydrogel microstructures fabricated by an asymmetric femtosecond Bessel beam. To further explore the swelling-shrinking mechanism, the hydrogel porosity difference between expansion and contraction states is investigated. In addition, by introducing the dynamic holographic processing and splicing processing method, more complex responsive microstructures (S-shaped, C-shaped, and tortile chiral structures) are rapidly fabricated, which exhibit tremendous expected deformation characteristics. Finally, as a proof of concept, a pH-responsive microgripper is fabricated for in situ capturing polystyrene (PS) particles and neural stem cells rapidly. This flexible, designable, and one-step approach manufacturing of intelligent actuator provides a versatile platform for micro-objects manipulation and drug delivery.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hidrogéis Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hidrogéis Idioma: En Ano de publicação: 2020 Tipo de documento: Article