Your browser doesn't support javascript.
loading
Comprehensive treatment of marine aquaculture wastewater by a cost-effective flow-through electro-oxidation process.
Lang, Zhicheng; Zhou, Minghua; Zhang, Qizhan; Yin, Xiaoya; Li, Yawei.
Afiliação
  • Lang Z; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science an
  • Zhou M; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science an
  • Zhang Q; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science an
  • Yin X; Tianjin Fisheries Research Institute, Tianjin 300221,China.
  • Li Y; Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science an
Sci Total Environ ; 722: 137812, 2020 Jun 20.
Article em En | MEDLINE | ID: mdl-32199368
The effective treatment of marine aquaculture wastewater is of great significance to protect marine environment and marine organisms. This study validated the feasibility of the comprehensive removal of NH4+-N, NO2--N, COD and P, as well as disinfection and antibiotics removal from marine aquaculture wastewater by electrochemical oxidation (EO), comparing the performance and energy consumption with that by electro-peroxone (EP) and electro-Fenton (EF) process. Due to the formation of more free chlorine, the removal of NH4+-N and COD was in order of EO â‰« EP > EF. A new flow-through EO reactor was adopted, which was found enhanced the formation rate of free chlorine and degradation rate of pollutants, and thus performed better than that of flow-by reactor and batch reactor. By this flow-through EO process, the removal of NH4+-N and NO2--N could reach >90% and their concentrations after treatment both meet the Water Drainage Standard for Sea Water Mariculture (SC/T 9103-2007). Meanwhile, the process had a good bactericidal performance with a lg(c/c0) of -5.6. At the same time, antibiotics such as sulfadimidine (SMT) and norfloxacin (NOR) could be completely removed. The energy consumption was only 0.054 kWh/g NH4+-N (0.27 kWh/m3), which was far more cost-effective than other oxidative processes. The new flow-through EO process has great practical application prospects for the comprehensive removal of multiple pollutants and sterilization from marine aquaculture wastewater.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Águas Residuárias Tipo de estudo: Health_economic_evaluation Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Águas Residuárias Tipo de estudo: Health_economic_evaluation Idioma: En Ano de publicação: 2020 Tipo de documento: Article