Your browser doesn't support javascript.
loading
Surfactant-dependent critical interfacial tension in silicon carbide membranes for produced water treatment.
Virga, Ettore; Bos, Bernard; Biesheuvel, P M; Nijmeijer, Arian; de Vos, Wiebe M.
Afiliação
  • Virga E; Membrane Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands.
  • Bos B; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands.
  • Biesheuvel PM; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands.
  • Nijmeijer A; Membrane Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands.
  • de Vos WM; Membrane Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands. Electronic address: w.m.devos@utwente.nl.
J Colloid Interface Sci ; 571: 222-231, 2020 Jul 01.
Article em En | MEDLINE | ID: mdl-32200166
ABSTRACT
During fossil oil extraction, a complex water stream known as produced water (PW), is co-extracted. Membrane treatment makes PW re-use possible, but fouling and oil permeation remain major challenges. In this work, membrane fouling and oil retention of Synthetic PW stabilized with a cationic, anionic, zwitterionic or nonionic surfactant, were studied at various surfactant and salt concentrations. We discuss our results in the framework of the Young-Laplace (YL) equation, which predicts for a given membrane, pressure and oil-membrane contact angle, a critical interfacial tension (IFT) below which oil permeation should occur. We observe such a transition from high to low oil retention with decreasing IFT for the anionic (SDS), cationic (CTAB) and non-ionic (TX) surfactant, but at significantly higher critical IFTs than predicted by YL. On the other side, for the zwitterionic DDAPS we do not observe a drop in oil retention, even at the lowest IFT. The discrepancy between our findings and the critical IFT predicted by YL can be explained by the difference between the measured contact angle and the effective contact angle at the wall of the membrane pores. This leads to a surfactant-dependent critical IFT. Additionally, our results point out that zwitterionic surfactants even at the lowest IFT did not present a critical IFT and exhibited low fouling and low oil permeation.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article