Your browser doesn't support javascript.
loading
Recombination Pattern Characterization via Simulation Using Different Maize Populations.
Ren, Wei; Gong, Xiaoping; Li, Kun; Zhang, Hongwei; Chen, Fanjun; Pan, Qingchun.
Afiliação
  • Ren W; College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China.
  • Gong X; College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China.
  • Li K; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
  • Zhang H; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
  • Chen F; College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China.
  • Pan Q; College of Resources and Environmental Sciences; National Academy of Agriculture Green Development; Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China.
Int J Mol Sci ; 21(6)2020 Mar 23.
Article em En | MEDLINE | ID: mdl-32210156
ABSTRACT
Efficient recombination is critical to both plant breeding and gene cloning. However, almost all traditional recombination studies and genetic improvements require the slow and labor-intensive population construction process, and little is known about the recombination characteristics of populations of different types, generations, and origins. Here, we provide a simple and efficient simulation method for population construction based on doubled haploid (DH) and intermated B73 × Mo17 maize (IBM) populations to predict the recombination pattern. We found that the chromosomes had 0, 1, 2, and 3 recombination events that occurred at rates of 0.16, 0.30, 0.23, and 0.15, respectively, in the DH and the recombination rate of each chromosome in the IBM population ranged from 0 to 12.1 cM per 125 kb. Based on the observed recombination parameters, we estimated the number of recombination events and constructed the linkage maps of the simulated DH and recombination inbred line (RIL) populations. These simulated populations exhibited similar recombination patterns compared with the real populations, suggesting the feasibility of this simulation approach. We then compared the recombination rates of the simulated populations of different types (DH induced or self-crossed), generations, and origins (using the 8, 16, and 32 multiparent advanced generation intercross (MAGIC) populations), and suggested a rapid and cost-effective population construction procedure for breeders and geneticists, while maintaining an optimal recombination rate. This study offers a convenient method for optimizing the population construction process and has broader implications for other crop species, thereby facilitating future population studies and genetic improvement strategies.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Recombinação Genética / Zea mays / Genética Populacional Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Recombinação Genética / Zea mays / Genética Populacional Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article