Your browser doesn't support javascript.
loading
Preparation of multi-temperature responsive elastomers by generating ionic networks in 1,2-polybutadiene using an anionic melting method.
Liu, Jinhui; Yuan, Yuka; Niu, Zhibin; Li, Qian; Meng, Fansen; Wang, Zhaobo; Hua, Jing.
Afiliação
  • Liu J; Key Laboratory of Rubber-Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China. huajing72@qust.edu.cn.
  • Yuan Y; Key Laboratory of Rubber-Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China. huajing72@qust.edu.cn.
  • Niu Z; Key Laboratory of Rubber-Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China. huajing72@qust.edu.cn.
  • Li Q; Key Laboratory of Rubber-Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China. huajing72@qust.edu.cn.
  • Meng F; Key Laboratory of Rubber-Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China. huajing72@qust.edu.cn.
  • Wang Z; Key Laboratory of Rubber-Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China. huajing72@qust.edu.cn.
  • Hua J; Key Laboratory of Rubber-Plastics Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China. huajing72@qust.edu.cn.
Soft Matter ; 16(15): 3686-3694, 2020 Apr 15.
Article em En | MEDLINE | ID: mdl-32227062
ABSTRACT
The development of reversible networks in elastomers provided unique inspiration for the design of advanced polymers with excellent properties. In this paper, we adopted an anionic melting method to introduce carboxylate groups into 1,2-polybutadiene (1,2-PB), using maleic anhydride as a modifier, and sodium hydride (NaH), calcium hydride (CaH2), and lithium aluminum hydride (LiAlH4) as metallization reagents. Na-Based, Ca-based, and Li/Al-based ionic bond networks were constructed in the covalently crosslinked 1,2-PB. The effects of the electronegativity and valence of the metal ions on the strength and reversible temperature of the ionic network were studied. Payne effect was shown by rheological tests, demonstrating the interactions between the ionic networks and rubber chains. The reforming temperature for these ionic networks was studied by stress-relaxation analysis, and shape memory experiments were performed based on these temperatures. This concept provides novel inspiration for the design of high-performance and temperature-adaptive elastomers.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article