Your browser doesn't support javascript.
loading
Revisiting the Atomistic Structures at the Interface of Au(111) Electrode-Sulfuric Acid Solution.
Fang, Yuan; Ding, Song-Yuan; Zhang, Meng; Steinmann, Stephan N; Hu, Ren; Mao, Bing-Wei; Feliu, Juan M; Tian, Zhong-Qun.
Afiliação
  • Fang Y; State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
  • Ding SY; State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
  • Zhang M; State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
  • Steinmann SN; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, 46 Allée d'Italie, F-69364 Lyon, France.
  • Hu R; State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
  • Mao BW; State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
  • Feliu JM; Instituto de Electroquímica, Universidad de Alicante, San Vicente del Raspeig, Alicante E-03690, Spain.
  • Tian ZQ; State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
J Am Chem Soc ; 142(20): 9439-9446, 2020 May 20.
Article em En | MEDLINE | ID: mdl-32338907
ABSTRACT
Knowledge of atomistic structures at solid/liquid interfaces is essential to elucidate interfacial processes in chemistry, physics, and materials sciences. The (√3 × âˆš7) structure associated with a pair of sharp reversible current spikes in the cyclic voltammogram on a Au(111) electrode in sulfuric acid solution represents one of the most classical ordered structures at electrode/electrolyte interfaces. Although more than 10 adsorption configurations have been proposed in the past four decades, the atomistic structure remains ambiguous and is consequently an open problem in electrochemistry and surface science. Herein, by combining high-resolution electrochemical scanning tuning microscopy, electrochemical infrared and Raman spectroscopies, and, in particular, the newly developed quantitative computational method for electrochemical infrared and Raman spectra, we unambiguously reveal that the adstructure is Au(111)(√3 × âˆš7)-(SO4···w2) with a sulfate anion (SO4*) and two structured water molecules (w2*) in a unit cell, and the crisscrossed [w···SO4···w]n and [w···w···]n hydrogen-bonding network comprises the symmetric adstructure. We further elucidate that the electrostatic potential energy dictates the proton affinity of sulfate anions, leading to the potential-tuned structural transformations. Our work enlightens the structural details of the inner Helmholtz plane and thus advances our fundamental understanding of the processes at electrochemical interfaces.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article