Your browser doesn't support javascript.
loading
Gradient-based generation of intermediate images for heterogeneous tumor segmentation within hybrid PET/MRI scans.
Sbei, Arafet; ElBedoui, Khaoula; Barhoumi, Walid; Maktouf, Chokri.
Afiliação
  • Sbei A; Université de Tunis El Manar, Institut Supérieur d'Informatique, Research Team on Intelligent Systems in Imaging and Artificial Vision (SIIVA), LR16ES06 Laboratoire de recherche en Informatique, Modélisation et Traitement de l'Information et de la Connaissance (LIMTIC), 2 Rue Bayrouni, 2080 Ariana,
  • ElBedoui K; Université de Tunis El Manar, Institut Supérieur d'Informatique, Research Team on Intelligent Systems in Imaging and Artificial Vision (SIIVA), LR16ES06 Laboratoire de recherche en Informatique, Modélisation et Traitement de l'Information et de la Connaissance (LIMTIC), 2 Rue Bayrouni, 2080 Ariana,
  • Barhoumi W; Université de Tunis El Manar, Institut Supérieur d'Informatique, Research Team on Intelligent Systems in Imaging and Artificial Vision (SIIVA), LR16ES06 Laboratoire de recherche en Informatique, Modélisation et Traitement de l'Information et de la Connaissance (LIMTIC), 2 Rue Bayrouni, 2080 Ariana,
  • Maktouf C; Nuclear Medicine Department, Pasteur Institute of Tunis, Tunis, Tunisia.
Comput Biol Med ; 119: 103669, 2020 04.
Article em En | MEDLINE | ID: mdl-32339115
Segmentation of tumors from hybrid PET/MRI scans plays an essential role in accurate diagnosis and treatment planning. However, when treating tumors, several challenges, notably heterogeneity and the problem of leaking into surrounding tissues with similar high uptake, have to be considered. To address these issues, we propose an automated method for accurate delineation of tumors in hybrid PET/MRI scans. The method is mainly based on creating intermediate images. In fact, an automatic detection technique that determines a preliminary Interesting Uptake Region (IUR) is firstly performed. To overcome the leakage problem, a separation technique is adopted to generate the final IUR. Then, smart seeds are provided for the Graph Cut (GC) technique to obtain the tumor map. To create intermediate images that tend to reduce heterogeneity faced on the original images, the tumor map gradient is combined with the gradient image. Lastly, segmentation based on the GCsummax technique is applied to the generated images. The proposed method has been validated on PET phantoms as well as on real-world PET/MRI scans of prostate, liver and pancreatic tumors. Experimental comparison revealed the superiority of the proposed method over state-of-the-art methods. This confirms the crucial role of automatically creating intermediate images in addressing the problem of wrongly estimating arc weights for heterogeneous targets.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tomografia por Emissão de Pósitrons / Neoplasias Limite: Humans / Male Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tomografia por Emissão de Pósitrons / Neoplasias Limite: Humans / Male Idioma: En Ano de publicação: 2020 Tipo de documento: Article