Your browser doesn't support javascript.
loading
Analysis of the accuracy of actuation electronics in the laser interferometer space antenna pathfinder.
Armano, M; Audley, H; Baird, J; Born, M; Bortoluzzi, D; Cardines, N; Castelli, E; Cavalleri, A; Cesarini, A; Cruise, A M; Danzmann, K; de Deus Silva, M; Dixon, G; Dolesi, R; Ferraioli, L; Ferroni, V; Fitzsimons, E D; Freschi, M; Gesa, L; Giardini, D; Gibert, F; Giusteri, R; Grimani, C; Grzymisch, J; Harrison, I; Hartig, M-S; Heinzel, G; Hewitson, M; Hollington, D; Hoyland, D; Hueller, M; Inchauspé, H; Jennrich, O; Jetzer, P; Karnesis, N; Kaune, B; Killow, C J; Korsakova, N; López-Zaragoza, J P; Maarschalkerweerd, R; Mance, D; Martín, V; Martin-Polo, L; Martino, J; Martin-Porqueras, F; Mateos, I; McNamara, P W; Mendes, J; Mendes, L; Meshksar, N.
Afiliação
  • Armano M; European Space Technology Centre, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands.
  • Audley H; Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik und Leibniz Universität Hannover, Callinstraße 38, 30167 Hannover, Germany.
  • Baird J; APC, Univ Paris Diderot, CNRS/IN2P3, CEA/lrfu, Obs de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75013 Paris, France.
  • Born M; Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik und Leibniz Universität Hannover, Callinstraße 38, 30167 Hannover, Germany.
  • Bortoluzzi D; Department of Industrial Engineering, University of Trento, via Sommarive 9, 38123 Trento, Italy.
  • Cardines N; Institut für Geophysik, ETH Zürich, Sonneggstrasse 5, CH-8092 Zürich, Switzerland.
  • Castelli E; Trento Institute for Fundamental Physics and Application/INFN, 38123 Povo, Trento, Italy.
  • Cavalleri A; Istituto di Fotonica e Nanotecnologie, CNR-Fondazione Bruno Kessler, I-38123 Povo, Trento, Italy.
  • Cesarini A; DISPEA, Università di Urbino "Carlo Bo", Via S. Chiara, 27, 61029 Urbino/INFN, Italy.
  • Cruise AM; The School of Physics and Astronomy, University of Birmingham, B15 2TT Birmingham, United Kingdom.
  • Danzmann K; Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik und Leibniz Universität Hannover, Callinstraße 38, 30167 Hannover, Germany.
  • de Deus Silva M; European Space Astronomy Centre, European Space Agency, Villanueva de la Cañada, 28692 Madrid, Spain.
  • Dixon G; The School of Physics and Astronomy, University of Birmingham, B15 2TT Birmingham, United Kingdom.
  • Dolesi R; Trento Institute for Fundamental Physics and Application/INFN, 38123 Povo, Trento, Italy.
  • Ferraioli L; Institut für Geophysik, ETH Zürich, Sonneggstrasse 5, CH-8092 Zürich, Switzerland.
  • Ferroni V; Trento Institute for Fundamental Physics and Application/INFN, 38123 Povo, Trento, Italy.
  • Fitzsimons ED; European Space Technology Centre, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk, The NetherlandsAlbert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik und Leibniz Universität Hannover, Callinstraße 38, 30167 Hannover, GermanyAPC, Univ Paris Diderot, CNRS/IN2P3, CEA/lrfu, Obs d
  • Freschi M; European Space Astronomy Centre, European Space Agency, Villanueva de la Cañada, 28692 Madrid, Spain.
  • Gesa L; Institut de Ciències de l'Espai (ICE, CSIC), Campus UAB, Carrer de Can Magrans s/n, 08193 Cerdanyola del Vallès, Spain.
  • Giardini D; Institut für Geophysik, ETH Zürich, Sonneggstrasse 5, CH-8092 Zürich, Switzerland.
  • Gibert F; Trento Institute for Fundamental Physics and Application/INFN, 38123 Povo, Trento, Italy.
  • Giusteri R; Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik und Leibniz Universität Hannover, Callinstraße 38, 30167 Hannover, Germany.
  • Grimani C; DISPEA, Università di Urbino "Carlo Bo", Via S. Chiara, 27, 61029 Urbino/INFN, Italy.
  • Grzymisch J; European Space Technology Centre, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands.
  • Harrison I; European Space Operations Centre, European Space Agency, 64293 Darmstadt, Germany.
  • Hartig MS; Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik und Leibniz Universität Hannover, Callinstraße 38, 30167 Hannover, Germany.
  • Heinzel G; Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik und Leibniz Universität Hannover, Callinstraße 38, 30167 Hannover, Germany.
  • Hewitson M; Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik und Leibniz Universität Hannover, Callinstraße 38, 30167 Hannover, Germany.
  • Hollington D; High Energy Physics Group, Physics Department, Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2BW, United Kingdom.
  • Hoyland D; The School of Physics and Astronomy, University of Birmingham, B15 2TT Birmingham, United Kingdom.
  • Hueller M; Trento Institute for Fundamental Physics and Application/INFN, 38123 Povo, Trento, Italy.
  • Inchauspé H; APC, Univ Paris Diderot, CNRS/IN2P3, CEA/lrfu, Obs de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75013 Paris, France.
  • Jennrich O; European Space Technology Centre, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands.
  • Jetzer P; Physik Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
  • Karnesis N; APC, Univ Paris Diderot, CNRS/IN2P3, CEA/lrfu, Obs de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75013 Paris, France.
  • Kaune B; Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik und Leibniz Universität Hannover, Callinstraße 38, 30167 Hannover, Germany.
  • Killow CJ; SUPA, Institute for Gravitational Research, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom.
  • Korsakova N; Observatoire de la Côte d'Azur, Boulevard de l'Observatoire CS 34229, F 06304 Nice, France.
  • López-Zaragoza JP; Institut de Ciències de l'Espai (ICE, CSIC), Campus UAB, Carrer de Can Magrans s/n, 08193 Cerdanyola del Vallès, Spain.
  • Maarschalkerweerd R; European Space Operations Centre, European Space Agency, 64293 Darmstadt, Germany.
  • Mance D; Institut für Geophysik, ETH Zürich, Sonneggstrasse 5, CH-8092 Zürich, Switzerland.
  • Martín V; Institut de Ciències de l'Espai (ICE, CSIC), Campus UAB, Carrer de Can Magrans s/n, 08193 Cerdanyola del Vallès, Spain.
  • Martin-Polo L; European Space Astronomy Centre, European Space Agency, Villanueva de la Cañada, 28692 Madrid, Spain.
  • Martino J; APC, Univ Paris Diderot, CNRS/IN2P3, CEA/lrfu, Obs de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, 75013 Paris, France.
  • Martin-Porqueras F; European Space Astronomy Centre, European Space Agency, Villanueva de la Cañada, 28692 Madrid, Spain.
  • Mateos I; Escuela Superior de Ingeniería, Universidad de Cádiz, 11519 Cádiz, Spain.
  • McNamara PW; European Space Technology Centre, European Space Agency, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands.
  • Mendes J; European Space Operations Centre, European Space Agency, 64293 Darmstadt, Germany.
  • Mendes L; European Space Astronomy Centre, European Space Agency, Villanueva de la Cañada, 28692 Madrid, Spain.
  • Meshksar N; Institut für Geophysik, ETH Zürich, Sonneggstrasse 5, CH-8092 Zürich, Switzerland.
Rev Sci Instrum ; 91(4): 045003, 2020 Apr 01.
Article em En | MEDLINE | ID: mdl-32357757
ABSTRACT
The Laser Interferometer Space Antenna Pathfinder (LPF) main observable, labeled Δg, is the differential force per unit mass acting on the two test masses under free fall conditions after the contribution of all non-gravitational forces has been compensated. At low frequencies, the differential force is compensated by an applied electrostatic actuation force, which then must be subtracted from the measured acceleration to obtain Δg. Any inaccuracy in the actuation force contaminates the residual acceleration. This study investigates the accuracy of the electrostatic actuation system and its impact on the LPF main observable. It is shown that the inaccuracy is mainly caused by the rounding errors in the waveform processing and also by the random error caused by the analog to digital converter random noise in the control loop. Both errors are one order of magnitude smaller than the resolution of the commanded voltages. We developed a simulator based on the LPF design to compute the close-to-reality actuation voltages and, consequently, the resulting actuation forces. The simulator is applied during post-processing the LPF data.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article