Your browser doesn't support javascript.
loading
Biodegradable Nanocomposite with Dual Cell-Tissue Penetration for Deep Tumor Chemo-Phototherapy.
Pan, Xueting; Li, Pengju; Bai, Lintao; Ma, Junjie; Li, Shanshan; Zhang, Fengrong; Liu, Shuang; Wu, Qingyuan; Shen, Heyun; Liu, Huiyu.
Afiliação
  • Pan X; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemica
  • Li P; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemica
  • Bai L; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemica
  • Ma J; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemica
  • Li S; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemica
  • Zhang F; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemica
  • Liu S; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemica
  • Wu Q; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemica
  • Shen H; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemica
  • Liu H; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials and Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemica
Small ; 16(22): e2000809, 2020 06.
Article em En | MEDLINE | ID: mdl-32378321
Chemo-phototherapy, as a promising cancer combination therapy strategy, has attracted widespread attention. However, the complex tumor microenvironment restricts the penetration depth of chemo-phototherapy agents in the tumor region. Here, biodegradable amphiphilic gelatin (AG) wrapped nanocomposite (PRDCuS@AG) composed of doxorubicin and copper sulfide (CuS)-loaded dendrimer is designed for deep tumor chemo-phototherapy. PR in PRDCuS@AG represents arginine-conjugated polyamidoamine dendrimer. PRDCuS@AG can rapidly biodegrade into PRDCuS by matrix metalloproteinases under near-infrared light irradiation. The resulted PRDCuS harbors dual cell-tissue penetration ability, which can effectively penetrate deep into the tumor tissue. In particular, PRDCuS@AG achieves photoacoustic imaging-guided synergistic chemo-phototherapy with 97% of tumor inhibition rate. Moreover, PRDCuS@AG can further degrade into 3 nm ultrasmall CuS, which can be eliminated from the body after treatment to avoid side effects. This strategy provides an insight that the development of chemo-phototherapy agents with high penetration ability to overcome the limitation of current deep tumor therapy.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanocompostos / Nanopartículas / Hipertermia Induzida / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanocompostos / Nanopartículas / Hipertermia Induzida / Neoplasias Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article