Your browser doesn't support javascript.
loading
Cytotoxicity studies of Fe3O4 nanoparticles in chicken macrophage cells.
Zhang, Shan; Wu, Shu; Shen, Yiru; Xiao, Yunqi; Gao, Lizeng; Shi, Shourong.
Afiliação
  • Zhang S; Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China.
  • Wu S; Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China.
  • Shen Y; Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China.
  • Xiao Y; Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China.
  • Gao L; Institute of Biophysics, Chinese Academy of Science, CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, CAS, Beijing 100101, China.
  • Shi S; Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, People's Republic of China.
R Soc Open Sci ; 7(4): 191561, 2020 Apr.
Article em En | MEDLINE | ID: mdl-32431865
ABSTRACT
Magnetic Fe3O4 nanoparticles (Fe3O4-NPs) have been widely investigated for their biomedical applications. The main purpose of this study was to evaluate the cytotoxic effects of different sizes of Fe3O4-NPs in chicken macrophage cells (HD11). Experimental groups based on three sizes of Fe3O4-NPs (60, 120 and 250 nm) were created, and the Fe3O4-NPs were added to the cells at different doses according to the experimental group. The cell activity, oxidative index (malondialdehyde (MDA), superoxide dismutase (SOD) and reactive oxygen species (ROS)), apoptosis and pro-inflammatory cytokine secretion level were detected to analyse the cytotoxic effects of Fe3O4-NPs of different sizes in HD11 cells. The results revealed that the cell viability of the 60 nm Fe3O4-NPs group was lower than those of the 120 and 250 nm groups when the same concentration of Fe3O4-NPs was added. No significant difference in MDA was observed among the three Fe3O4-NP groups. The SOD level and ROS production of the 60 nm group were significantly greater than those of the 120 and 250 nm groups. Furthermore, the highest levels of apoptosis and pro-inflammatory cytokine secretion were caused by the 60 nm Fe3O4-NPs. In conclusion, the smaller Fe3O4-NPs produced stronger cytotoxicity in chicken macrophage cells, and the cytotoxic effects may be related to the oxidative stress and apoptosis induced by increased ROS production as well as the increased expression of pro-inflammatory cytokines.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article