A simple algorithm helps early identification of SARS-CoV-2 infection patients with severe progression tendency.
Infection
; 48(4): 577-584, 2020 Aug.
Article
em En
| MEDLINE
| ID: mdl-32440918
OBJECTIVES: We aimed to develop a simple algorithm to help early identification of SARS-CoV-2 infection patients with severe progression tendency. METHODS: The univariable and multivariable analysis were computed to identify the independent predictors of COVID-19 progression. The prediction model was established in a retrospective training set of 322 COVID-19 patients and was re-evaluated in a prospective validation set of 317 COVID-19 patients. RESULTS: The multivariable analysis identified age (OR = 1.061, p = 0.028), lactate dehydrogenase (LDH) (OR = 1.006, p = 0.037), and CD4 count (OR = 0.993, p = 0.006) as the independent predictors of COVID-19 progression. Consequently, the age-LDH-CD4 algorithm was derived as (age × LDH)/CD4 count. In the training set, the area under the ROC curve (AUROC) of age-LDH-CD4 model was significantly higher than that of single CD4 count, LDH, or age (0.92, 0.85, 0.80, and 0.75, respectively). In the prospective validation set, the AUROC of age-LDH-CD4 model was also significantly higher than that of single CD4 count, LDH, or age (0.92, 0.75, 0.81, and 0.82, respectively). The age-LDH-CD4 ≥ 82 has high sensitive (81%) and specific (93%) for the early identification of COVID-19 patients with severe progression tendency. CONCLUSIONS: The age-LDH-CD4 model is a simple algorithm for early identifying patients with severe progression tendency following SARS-CoV-2 infection, and warrants further validation.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Pneumonia Viral
/
Algoritmos
/
Infecções por Coronavirus
/
Progressão da Doença
Tipo de estudo:
Diagnostic_studies
/
Etiology_studies
/
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Adult
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article