Your browser doesn't support javascript.
loading
Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize.
AbdElgawad, Hamada; Avramova, Viktoriya; Baggerman, Geert; Van Raemdonck, Geert; Valkenborg, Dirk; Van Ostade, Xaveer; Guisez, Yves; Prinsen, Els; Asard, Han; Van den Ende, Wim; Beemster, Gerrit T S.
Afiliação
  • AbdElgawad H; Research group for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium.
  • Avramova V; Department of Botany, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
  • Baggerman G; Research group for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium.
  • Van Raemdonck G; Applied Bio & molecular Systems, VITO, Mol, Belgium.
  • Valkenborg D; Center for Proteomics, University of Antwerp, Antwerp, Belgium.
  • Van Ostade X; Center for Proteomics, University of Antwerp, Antwerp, Belgium.
  • Guisez Y; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
  • Prinsen E; Applied Bio & molecular Systems, VITO, Mol, Belgium.
  • Asard H; Center for Proteomics, University of Antwerp, Antwerp, Belgium.
  • Van den Ende W; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
  • Beemster GTS; Research group for Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium.
Plant Cell Environ ; 43(9): 2254-2271, 2020 09.
Article em En | MEDLINE | ID: mdl-32488892
ABSTRACT
To understand the growth response to drought, we performed a proteomics study in the leaf growth zone of maize (Zea mays L.) seedlings and functionally characterized the role of starch biosynthesis in the regulation of growth, photosynthesis and antioxidant capacity, using the shrunken-2 mutant (sh2), defective in ADP-glucose pyrophosphorylase. Drought altered the abundance of 284 proteins overrepresented for photosynthesis, amino acid, sugar and starch metabolism, and redox-regulation. Changes in protein levels correlated with enzyme activities (increased ATP synthase, cysteine synthase, starch synthase, RuBisCo, peroxiredoxin, glutaredoxin, thioredoxin and decreased triosephosphate isomerase, ferredoxin, cellulose synthase activities, respectively) and metabolite concentrations (increased ATP, cysteine, glycine, serine, starch, proline and decreased cellulose levels). The sh2 mutant showed a reduced increase of starch levels under drought conditions, leading to soluble sugar starvation at the end of the night and correlating with an inhibition of leaf growth rates. Increased RuBisCo activity and pigment concentrations observed in WT, in response to drought, were lacking in the mutant, which suffered more oxidative damage and recovered more slowly after re-watering. These results demonstrate that starch biosynthesis contributes to maintaining leaf growth under drought stress and facilitates enhanced carbon acquisition upon recovery.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Amido / Folhas de Planta / Zea mays / Secas Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Amido / Folhas de Planta / Zea mays / Secas Idioma: En Ano de publicação: 2020 Tipo de documento: Article