Your browser doesn't support javascript.
loading
Astrocyte glutathione maintains endothelial barrier stability.
Huang, Sheng-Fu; Othman, Alaa; Koshkin, Alexey; Fischer, Sabrina; Fischer, David; Zamboni, Nicola; Ono, Katsuhiko; Sawa, Tomohiro; Ogunshola, Omolara O.
Afiliação
  • Huang SF; Institute for Veterinary Physiology, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
  • Othman A; Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, CH-8093, Zurich, Switzerland.
  • Koshkin A; Institute for Veterinary Physiology, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
  • Fischer S; Institute for Veterinary Physiology, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland; Institute of Zoology, University of Basel, Vesalgasse 1, CH-4051, Basel, Switzerland.
  • Fischer D; Functional Genomics Center Zurich, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
  • Zamboni N; Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 3, CH-8093, Zurich, Switzerland.
  • Ono K; Department of Microbiology, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan.
  • Sawa T; Department of Microbiology, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan.
  • Ogunshola OO; Institute for Veterinary Physiology, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland. Electronic address: larao@access.uzh.ch.
Redox Biol ; 34: 101576, 2020 07.
Article em En | MEDLINE | ID: mdl-32502899
ABSTRACT
Blood-brain barrier (BBB) impairment clearly accelerates brain disease progression. As ways to prevent injury-induced barrier dysfunction remain elusive, better understanding of how BBB cells interact and modulate barrier integrity is needed. Our metabolomic profiling study showed that cell-specific adaptation to injury correlates well with metabolic reprogramming at the BBB. In particular we noted that primary astrocytes (AC) contain comparatively high levels of glutathione (GSH)-related metabolites compared to primary endothelial cells (EC). Injury significantly disturbed redox balance in EC but not AC motivating us to assess 1) whether an AC-EC GSH shuttle supports barrier stability and 2) the impact of GSH on EC function. Using an isotopic labeling/tracking approach combined with Time-of-Flight Mass Spectrometry (TOF-MS) we prove that AC constantly shuttle GSH to EC even under resting conditions - a flux accelerated by injury conditions in vitro. In correlation, co-culture studies revealed that blocking AC GSH generation and secretion via siRNA-mediated γ-glutamyl cysteine ligase (GCL) knockdown significantly compromises EC barrier integrity. Using different GSH donors, we further show that exogenous GSH supplementation improves barrier function by maintaining organization of tight junction proteins and preventing injury-induced tight junction phosphorylation. Thus the AC GSH shuttle is key for maintaining EC redox homeostasis and BBB stability suggesting GSH supplementation could improve recovery after brain injury.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Astrócitos / Glutationa Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Astrócitos / Glutationa Idioma: En Ano de publicação: 2020 Tipo de documento: Article