A predictive model for treatment response in patients with locally advanced esophageal squamous cell carcinoma after concurrent chemoradiotherapy: based on SUVmean and NLR.
BMC Cancer
; 20(1): 544, 2020 Jun 10.
Article
em En
| MEDLINE
| ID: mdl-32522277
BACKGROUND: We conducted this study to combine the mean standardized uptake value (SUVmean) and neutrophil to lymphocyte ratio (NLR) to establish a strong predictive model for patients with esophageal squamous cell carcinoma (ESCC) after concurrent chemoradiotherapy (CCRT). METHODS: We retrospectively analyzed 163 newly diagnosed ESCC patients treated with CCRT. Eighty patients (training set) were randomly selected to generate cut-off SUVmean and NLR values by receiver operating characteristic (ROC) curve analysis and to establish a predictive model by using the independent predictors of treatment outcomes. Then, we evaluated the performance of the prediction model regarding treatment outcomes in the testing set (n = 83) and in all sets. RESULTS: A high SUVmean (> 5.81) and high NLR (> 2.42) at diagnosis were associated with unfavorable treatment outcomes in patients with ESCC. The prediction model had a better performance than the simple parameters (p < 0.05). With a cut-off value of 0.77, the prediction model significantly improved the specificity and positive predictive value for treatment response (88.9 and 92.1% in the training set, 95.8 and 97.1% in the testing set, and 92.2 and 91.8% in all sets, respectively). CONCLUSIONS: The pretreatment SUVmean and NLR were independent predictors of treatment response in ESCC patients treated with CCRT. The predictive model was constructed based on these two parameters and provides a highly accurate tool for predicting patient outcomes.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Neoplasias Esofágicas
/
Quimiorradioterapia
/
Carcinoma de Células Escamosas do Esôfago
/
Glucose
Tipo de estudo:
Diagnostic_studies
/
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Adult
/
Aged
/
Aged80
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article