Your browser doesn't support javascript.
loading
Oncogenic Gata1 causes stage-specific megakaryocyte differentiation delay.
Juban, Gaëtan; Sakakini, Nathalie; Chagraoui, Hedia; Cruz Hernandez, David; Cheng, Qian; Soady, Kelly; Stoilova, Bilyana; Garnett, Catherine; Waithe, Dominic; Otto, Georg; Doondeea, Jessica; Usukhbayar, Batchimeg; Karkoulia, Elena; Alexiou, Maria; Strouboulis, John; Morrissey, Edward; Roberts, Irene; Porcher, Catherine; Vyas, Paresh.
Afiliação
  • Juban G; MRC Molecular Haematology Unit WIMM, University of Oxford, UK.
  • Sakakini N; MRC Molecular Haematology Unit WIMM, University of Oxford, UK.
  • Chagraoui H; MRC Molecular Haematology Unit WIMM, University of Oxford, UK.
  • Cruz Hernandez D; MRC Molecular Haematology Unit WIMM, University of Oxford, UK.
  • Cheng Q; Centre for Computational Biology WIMM, University of Oxford, UK.
  • Soady K; MRC Molecular Haematology Unit WIMM, University of Oxford, UK.
  • Stoilova B; MRC Molecular Haematology Unit WIMM, University of Oxford, UK.
  • Garnett C; MRC Molecular Haematology Unit WIMM, University of Oxford, UK.
  • Waithe D; Centre for Computational Biology WIMM, University of Oxford, UK.
  • Otto G; University College London Institute of Child Health, London.
  • Doondeea J; MRC Molecular Haematology Unit WIMM, University of Oxford, UK.
  • Usukhbayar B; MRC Molecular Haematology Unit WIMM, University of Oxford, UK.
  • Karkoulia E; Institute of Molecular Biology and Biotechnology, Foundation of Rese and Technology-Hellas, Crete Greece.
  • Alexiou M; Biomedical Sciences Research Center "Alexander Fleming" Vari, Greece.
  • Strouboulis J; Institute of Molecular Biology and Biotechnology, Foundation of Rese and Technology-Hellas, Crete Greece.
  • Morrissey E; Centre for Computational Biology WIMM, University of Oxford, UK.
  • Roberts I; Department of Paediatrics, University of Oxford, UK.
  • Porcher C; MRC Molecular Haematology Unit WIMM, University of Oxford, UK.
  • Vyas P; MRC Molecular Haematology Unit WIMM, University of Oxford, UK.
Haematologica ; 106(4): 1106-1119, 2021 04 01.
Article em En | MEDLINE | ID: mdl-32527952
ABSTRACT
The megakaryocyte/erythroid Transient Myeloproliferative Disorder (TMD) in newborns with Down Syndrome (DS) occurs when N-terminal truncating mutations of the hemopoietic transcription factor GATA1, that produce GATA1short protein (GATA1s), are acquired early in development. Prior work has shown that murine GATA1s, by itself, causes a transient yolk sac myeloproliferative disorder. However, it is unclear where in the hemopoietic cellular hierarchy GATA1s exerts its effects to produce this myeloproliferative state. Here, through a detailed examination of hemopoiesis from murine GATA1s ES cells and GATA1s embryos we define defects in erythroid and megakaryocytic differentiation that occur relatively late in hemopoiesis. GATA1s causes an arrest late in erythroid differentiation in vivo, and even more profoundly in ES-cell derived cultures, with a marked reduction of Ter-119 cells and reduced erythroid gene expression. In megakaryopoiesis, GATA1s causes a differentiation delay at a specific stage, with accumulation of immature, kit-expressing CD41hi megakaryocytic cells. In this specific megakaryocytic compartment, there are increased numbers of GATA1s cells in S-phase of cell cycle and reduced number of apoptotic cells compared to GATA1 cells in the same cell compartment. There is also a delay in maturation of these immature GATA1s megakaryocytic lineage cells compared to GATA1 cells at the same stage of differentiation. Finally, even when GATA1s megakaryocytic cells mature, they mature aberrantly with altered megakaryocyte-specific gene expression and activity of the mature megakaryocyte enzyme, acetylcholinesterase. These studies pinpoint the hemopoietic compartment where GATA1s megakaryocyte myeloproliferation occurs, defining where molecular studies should now be focussed to understand the oncogenic action of GATA1s.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Síndrome de Down / Reação Leucemoide Tipo de estudo: Etiology_studies Limite: Animals / Humans / Newborn Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Síndrome de Down / Reação Leucemoide Tipo de estudo: Etiology_studies Limite: Animals / Humans / Newborn Idioma: En Ano de publicação: 2021 Tipo de documento: Article