Your browser doesn't support javascript.
loading
Research on Treatment of Oily Sludge from the Tank Bottom by Ball Milling Combined with Ozone-Catalyzed Oxidation.
Chen, Hong-Shuo; Zhang, Qi-Ming; Yang, Zi-Jian; Liu, Yang-Sheng.
Afiliação
  • Chen HS; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China.
  • Zhang QM; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China.
  • Yang ZJ; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China.
  • Liu YS; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, People's Republic of China.
ACS Omega ; 5(21): 12259-12269, 2020 Jun 02.
Article em En | MEDLINE | ID: mdl-32548409
ABSTRACT
Difficult separation of oil-solid phase and high fine content of the recovered oil were two problems in the treatment of oily sludge from the tank bottom by the hot water-based extraction process. To solve the problems, one technology with "ball milling + ozone-catalyzed oxidation" as the core was studied, and the process parameters of ball milling and ozone-catalyzed oxidation were respectively optimized. After ball milling treatment, the oil content of dry oily sludge decreased from 33.9 to 10.2%. Then, an ozone catalytic oxidation treatment technology with aluminum ore as the catalyst was developed to further treat this stubborn oily sludge. Under the optimal conditions, the oil content of oily sludge could be further reduced to 0.28%, which met the treatment and disposal requirements stipulated in GB4284-2018. For further research on the contribution of the catalyst to the ozone catalytic oxidation system, the reaction activation energy and reaction rates of ozone oxidation and ozone catalytic oxidation were compared from the perspective of kinetics. The results showed that, with the catalyst addition, the reaction rate constants increased about three times and the reaction activation energy reduced 82.26%, which showed the effectiveness of the catalyst on the kinetics quantitatively. The combined process with "ball milling + ozone-catalyzed oxidation" as the core can solve the two problems in the treatment of oily sludge from the tank bottom by hot water-based extraction and provides a reference for the harmless and resourceful treatment of oily sludge from the tank bottom.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article