Your browser doesn't support javascript.
loading
Hydrophilic Mechano-Bactericidal Nanopillars Require External Forces to Rapidly Kill Bacteria.
Valiei, Amin; Lin, Nicholas; Bryche, Jean-Francois; McKay, Geoffrey; Canva, Michael; Charette, Paul G; Nguyen, Dao; Moraes, Christopher; Tufenkji, Nathalie.
Afiliação
  • Valiei A; Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada.
  • Lin N; Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5, Canada.
  • Bryche JF; Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada.
  • McKay G; Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada.
  • Canva M; Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montréal, Québec H3A 0G4, Canada.
  • Charette PG; Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada.
  • Nguyen D; Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada.
  • Moraes C; Laboratoire Nanotechnologies Nanosystèmes (LN2), CNRS UMI-3463, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada.
  • Tufenkji N; Institut Interdisciplinaire d'Innovation Technologique (3IT), Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada.
Nano Lett ; 20(8): 5720-5727, 2020 08 12.
Article em En | MEDLINE | ID: mdl-32573246
ABSTRACT
Nanopillars have been shown to mechanically damage bacteria, suggesting a promising strategy for future antibacterial surfaces. However, the mechanisms underlying this phenomena remain unclear, which ultimately limits translational potential toward real-world applications. Using real-time and end-point analysis techniques, we demonstrate that in contrast to initial expectations, bacteria on multiple hydrophilic "mechano-bactericidal" surfaces remained viable unless exposed to a moving air-liquid interface, which caused considerable cell death. Reasoning that normal forces arising from surface tension may underlie this mechano-bactericidal activity, we developed computational and experimental models to estimate, manipulate, and recreate the impact of these forces. Our experiments together demonstrate that a critical level of external force acting on cells attached to nanopillar surfaces can rapidly deform and rupture bacteria. These studies provide fundamental physical insight into how nanopillar surfaces can serve as effective antibacterial materials and suggest use-conditions under which such nanotechnology approaches may provide practical value.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanoestruturas Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nanoestruturas Idioma: En Ano de publicação: 2020 Tipo de documento: Article