Your browser doesn't support javascript.
loading
A National-Scale Assessment of Mercury Bioaccumulation in United States National Parks Using Dragonfly Larvae As Biosentinels through a Citizen-Science Framework.
Eagles-Smith, Collin A; Willacker, James J; Nelson, Sarah J; Flanagan Pritz, Colleen M; Krabbenhoft, David P; Chen, Celia Y; Ackerman, Joshua T; Grant, Evan H Campbell; Pilliod, David S.
Afiliação
  • Eagles-Smith CA; United States Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon 97330, United States.
  • Willacker JJ; United States Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon 97330, United States.
  • Nelson SJ; School of Forest Resources, University of Maine, Orono, Maine 04469, United States.
  • Flanagan Pritz CM; Appalachian Mountain Club, Gorham, New Hampshire 03581, United States.
  • Krabbenhoft DP; National Park Service, Air Resources Division, National Resource, Stewardship and Science Directorate, Lakewood, Colorado 80228, United States.
  • Chen CY; United States Geological Survey, Upper Midwest Water Science Center, Middleton, Wisconsin 53562, United States.
  • Ackerman JT; Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, United States.
  • Grant EHC; United States Geological Survey, Western Ecological Research Center, Dixon, California 95620, United States.
  • Pilliod DS; United States Geological Survey, Patuxent Wildlife Research Center, Turners Falls, Massachussetts 01376, United States.
Environ Sci Technol ; 54(14): 8779-8790, 2020 07 21.
Article em En | MEDLINE | ID: mdl-32633494
We conducted a national-scale assessment of mercury (Hg) bioaccumulation in aquatic ecosystems, using dragonfly larvae as biosentinels, by developing a citizen-science network to facilitate biological sampling. Implementing a carefully designed sampling methodology for citizen scientists, we developed an effective framework for a landscape-level inquiry that might otherwise be resource limited. We assessed the variation in dragonfly Hg concentrations across >450 sites spanning 100 United States National Park Service units and examined intrinsic and extrinsic factors associated with the variation in Hg concentrations. Mercury concentrations ranged between 10.4 and 1411 ng/g dry weight across sites and varied among habitat types. Dragonfly total Hg (THg) concentrations were up to 1.8-fold higher in lotic habitats than in lentic habitats and 37% higher in waterbodies with abundant wetlands along their margins than those without wetlands. Mercury concentrations in dragonflies differed among families but were correlated (r2 > 0.80) with each other, enabling adjustment to a consistent family to facilitate spatial comparisons among sampling units. Dragonfly THg concentrations were positively correlated with THg concentrations in both fish and amphibians from the same locations, indicating that dragonfly larvae are effective indicators of Hg bioavailability in aquatic food webs. We used these relationships to develop an integrated impairment index of Hg risk to aquatic ecosytems and found that 12% of site-years exceeded high or severe benchmarks of fish, wildlife, or human health risk. Collectively, this continental-scale study demonstrates the utility of dragonfly larvae for estimating the potential mercury risk to fish and wildlife in aquatic ecosystems and provides a framework for engaging citizen science as a component of landscape Hg monitoring programs.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Odonatos / Mercúrio Limite: Animals País como assunto: America do norte Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Odonatos / Mercúrio Limite: Animals País como assunto: America do norte Idioma: En Ano de publicação: 2020 Tipo de documento: Article