Your browser doesn't support javascript.
loading
Mechano-modulatory synthetic niches for liver organoid derivation.
Sorrentino, Giovanni; Rezakhani, Saba; Yildiz, Ece; Nuciforo, Sandro; Heim, Markus H; Lutolf, Matthias P; Schoonjans, Kristina.
Afiliação
  • Sorrentino G; Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
  • Rezakhani S; Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
  • Yildiz E; Laboratory of Metabolic Signaling, Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
  • Nuciforo S; Department of Biomedicine, University Hospital Basel, University of Basel, 4031, Basel, Switzerland.
  • Heim MH; Department of Biomedicine, University Hospital Basel, University of Basel, 4031, Basel, Switzerland.
  • Lutolf MP; Clinic of Gastroenterology and Hepatology, University Hospital Basel, University of Basel, 4031, Basel, Switzerland.
  • Schoonjans K; Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland. matthias.lutolf@epfl.ch.
Nat Commun ; 11(1): 3416, 2020 07 10.
Article em En | MEDLINE | ID: mdl-32651372
ABSTRACT
The recent demonstration that primary cells from the liver can be expanded in vitro as organoids holds enormous promise for regenerative medicine and disease modelling. The use of three-dimensional (3D) cultures based on ill-defined and potentially immunogenic matrices, however, hampers the translation of liver organoid technology into real-life applications. We here use chemically defined hydrogels for the efficient derivation of both mouse and human hepatic organoids. Organoid growth is found to be highly stiffness-sensitive, a mechanism independent of acto-myosin contractility and requiring instead activation of the Src family of kinases (SFKs) and yes-associated protein 1 (YAP). Aberrant matrix stiffness, on the other hand, results in compromised proliferative capacity. Finally, we demonstrate the establishment of biopsy-derived human liver organoids without the use of animal components at any step of the process. Our approach thus opens up exciting perspectives for the establishment of protocols for liver organoid-based regenerative medicine.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Organoides / Fígado Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Organoides / Fígado Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2020 Tipo de documento: Article