Your browser doesn't support javascript.
loading
Assessment of cortical reorganization and preserved function in phantom limb pain: a methodological perspective.
Andoh, Jamila; Milde, Christopher; Diers, Martin; Bekrater-Bodmann, Robin; Trojan, Jörg; Fuchs, Xaver; Becker, Susanne; Desch, Simon; Flor, Herta.
Afiliação
  • Andoh J; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany. jamila.andoh@zi-mannheim.de.
  • Milde C; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany.
  • Diers M; Department of Psychology, University of Koblenz-Landau, Landau, Germany.
  • Bekrater-Bodmann R; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany.
  • Trojan J; Department of Psychosomatic Medicine and Psychotherapy, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany.
  • Fuchs X; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany.
  • Becker S; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany.
  • Desch S; Department of Psychology, University of Koblenz-Landau, Landau, Germany.
  • Flor H; Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159, Mannheim, Germany.
Sci Rep ; 10(1): 11504, 2020 07 13.
Article em En | MEDLINE | ID: mdl-32661345
ABSTRACT
Phantom limb pain (PLP) has been associated with reorganization in primary somatosensory cortex (S1) and preserved S1 function. Here we examined if methodological differences in the assessment of cortical representations might explain these findings. We used functional magnetic resonance imaging during a virtual reality movement task, analogous to the classical mirror box task, in twenty amputees with and without PLP and twenty matched healthy controls. We assessed the relationship between task-related activation maxima and PLP intensity in S1 and motor cortex (M1) in individually-defined or group-conjoint regions of interest (ROI) (overlap of task-related activation between the groups). We also measured cortical distances between both locations and correlated them with PLP intensity. Amputees compared to controls showed significantly increased activation in M1, S1 and S1M1 unrelated to PLP. Neural activity in M1 was positively related to PLP intensity in amputees with PLP when a group-conjoint ROI was chosen. The location of activation maxima differed between groups in S1 and M1. Cortical distance measures were unrelated to PLP. These findings suggest that sensory and motor maps differentially relate to PLP and that methodological differences might explain discrepant findings in the literature.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dor / Membro Fantasma / Córtex Somatossensorial / Amputados Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dor / Membro Fantasma / Córtex Somatossensorial / Amputados Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2020 Tipo de documento: Article