Your browser doesn't support javascript.
loading
Multiphase Photochemistry of Iron-Chloride Containing Particles as a Source of Aqueous Chlorine Radicals and Its Effect on Sulfate Production.
Gen, Masao; Zhang, Ruifeng; Li, Yongjie; Chan, Chak K.
Afiliação
  • Gen M; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
  • Zhang R; Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
  • Li Y; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
  • Chan CK; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China.
Environ Sci Technol ; 54(16): 9862-9871, 2020 08 18.
Article em En | MEDLINE | ID: mdl-32668147
Photolysis of iron chlorides is a well-known photolytic source of Cl• in environmental waters. However, the role of particulate chlorine radicals (Cl• and Cl2•-) in their multiphase oxidative potential has been much less explored. Herein, we examine the effect of Cl•/Cl2•- produced from photolysis of particulate iron chlorides on atmospheric multiphase oxidation. As a model system, experiments on multiphase oxidation of SO2 by Cl•/Cl2•- were performed. Fast sulfate production from SO2 oxidation was observed with reactive uptake coefficients of ∼10-5, comparable to the values necessary for explaining the observations in the haze events in China. The experimental and modeling results found a good positive correlation between the uptake coefficient, γSO2, and the Cl• production rate, d[Cl•]/dt, as γSO2 = 5.3 × 10-6 × log(d[Cl•]/dt) + 4.9 × 10-5. When commonly found particulate dicarboxylic acids (oxalic acid or malonic acid) were added, sulfate production was delayed due to the competition of Fe3+ between chloride and the dicarboxylic acid for its complexation at the initial stage. After the delay, comparable sulfate production was observed. The present study highlights the importance of photochemistry of particulate iron chlorides in multiphase oxidation processes in the atmosphere.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cloretos / Cloro País como assunto: Asia Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Cloretos / Cloro País como assunto: Asia Idioma: En Ano de publicação: 2020 Tipo de documento: Article