Multiphase Photochemistry of Iron-Chloride Containing Particles as a Source of Aqueous Chlorine Radicals and Its Effect on Sulfate Production.
Environ Sci Technol
; 54(16): 9862-9871, 2020 08 18.
Article
em En
| MEDLINE
| ID: mdl-32668147
Photolysis of iron chlorides is a well-known photolytic source of Cl⢠in environmental waters. However, the role of particulate chlorine radicals (Cl⢠and Cl2â¢-) in their multiphase oxidative potential has been much less explored. Herein, we examine the effect of Clâ¢/Cl2â¢- produced from photolysis of particulate iron chlorides on atmospheric multiphase oxidation. As a model system, experiments on multiphase oxidation of SO2 by Clâ¢/Cl2â¢- were performed. Fast sulfate production from SO2 oxidation was observed with reactive uptake coefficients of â¼10-5, comparable to the values necessary for explaining the observations in the haze events in China. The experimental and modeling results found a good positive correlation between the uptake coefficient, γSO2, and the Cl⢠production rate, d[Clâ¢]/dt, as γSO2 = 5.3 × 10-6 × log(d[Clâ¢]/dt) + 4.9 × 10-5. When commonly found particulate dicarboxylic acids (oxalic acid or malonic acid) were added, sulfate production was delayed due to the competition of Fe3+ between chloride and the dicarboxylic acid for its complexation at the initial stage. After the delay, comparable sulfate production was observed. The present study highlights the importance of photochemistry of particulate iron chlorides in multiphase oxidation processes in the atmosphere.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Cloretos
/
Cloro
País como assunto:
Asia
Idioma:
En
Ano de publicação:
2020
Tipo de documento:
Article