Your browser doesn't support javascript.
loading
Dodecahedral Au/Pt Nanobowls as Robust Plasmonic Electrocatalysts for Methanol Oxidation under Visible-Light Illumination.
Xu, Xiaoxiao; Fang, Caihong; Bi, Ting; Cui, Zhiqing; Zhao, Guili; Jiang, Xiaomin; Hu, Jinwu.
Afiliação
  • Xu X; College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher, Education Institutes, Anhui Nor
  • Fang C; College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher, Education Institutes, Anhui Nor
  • Bi T; College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher, Education Institutes, Anhui Nor
  • Cui Z; College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher, Education Institutes, Anhui Nor
  • Zhao G; College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher, Education Institutes, Anhui Nor
  • Jiang X; College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher, Education Institutes, Anhui Nor
  • Hu J; College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher, Education Institutes, Anhui Nor
Chemistry ; 26(47): 10787-10794, 2020 Aug 21.
Article em En | MEDLINE | ID: mdl-32715547
ABSTRACT
Plasmonic nanostructures with large absorption areas under resonant excitation have been utilized extensively in photon-assisted applications. In this work, dodecahedral Au nanobowls were first prepared by an easy and template-free method only through the introduction of H2 PtCl6 and I- during the growth procedure. The Au nanobowls show electron-field enhancement due to the high curvature of the bowl edge, the open region, and dodecahedral morphology. Au/Pt nanobowls, which couple plasmonic Au and catalytic Pt, were then constructed as plasmonic electrocatalysts for methanol oxidation. The mass activity reached 497.6 mA mg-1 under visible-light illumination, which is 1.9 times that measured in the dark. Simultaneously, the electrocatalytic stability is also greatly improved under light excitation. The enhanced properties of the plasmonic Au/Pt electrocatalysts are ascribed to the synergistic effect of the plasmon-enhanced photothermal and hot-carrier effects on the basis of experimental investigations. This work thus offers an effective methodology to construct efficient plasmonic electrocatalysts for fuel cells.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article