Your browser doesn't support javascript.
loading
Exploring flow-biofilm-sediment interactions: Assessment of current status and future challenges.
Gerbersdorf, Sabine Ulrike; Koca, Kaan; de Beer, Dirk; Chennu, Arjun; Noss, Christian; Risse-Buhl, Ute; Weitere, Markus; Eiff, Olivier; Wagner, Michael; Aberle, Jochen; Schweikert, Michael; Terheiden, Kristina.
Afiliação
  • Gerbersdorf SU; University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany. Electronic address: sabine.gerbersdorf@mwk.bwl.de.
  • Koca K; University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany. Electronic address: kaan.koca@iws.uni-stuttgart.de.
  • de Beer D; Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany. Electronic address: dbeer@mpi-bremen.de.
  • Chennu A; Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany; Leibniz Center for Tropical Marine Research, Fahrenheitstraße 6, 28359 Bremen, Germany. Electronic address: achennu@mpi-bremen.de.
  • Noss C; University of Koblenz-Landau, Institute for Environmental Sciences, Fortstraße 7, 76829 Landau, Germany; Federal Waterways Engineering and Research Institute, Hydraulic Engineering in Inland Areas, Kußmaulstraße 17, 76187 Karlsruhe, Germany. Electronic address: christian.noss@baw.de.
  • Risse-Buhl U; Helmholtz Centre for Environmental Research - UFZ, Department of River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany. Electronic address: ute.risse-buhl@ufz.de.
  • Weitere M; Helmholtz Centre for Environmental Research - UFZ, Department of River Ecology, Brückstraße 3a, 39114 Magdeburg, Germany. Electronic address: markus.weitere@ufz.de.
  • Eiff O; KIT Karlsruhe Institute of Technology, Institute for Hydromechanics, Otto-Ammann Platz 1, 76131 Karlsruhe, Germany. Electronic address: olivier.eiff@kit.edu.
  • Wagner M; KIT Karlsruhe Institute of Technology, Engler-Bunte-Institute, Water Chemistry and Water Technology, Engler-Bunte-Ring 9a, 76131 Karlsruhe, Germany. Electronic address: michael.wagner@kit.edu.
  • Aberle J; Technische Universität Braunschweig, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Beethovenstraße 51a, 38106 Braunschweig, Germany. Electronic address: jochen.aberle@tu-braunschweig.de.
  • Schweikert M; University of Stuttgart, Institute of Biomaterials and Biomolecular Systems, Pfaffenwaldring 57, 70569 Stuttgart, Germany. Electronic address: michael.schweikert@bio.uni-stuttgart.de.
  • Terheiden K; University of Stuttgart, Institute for Modelling Hydraulic and Environmental Systems, Pfaffenwaldring 61, 70569 Stuttgart, Germany. Electronic address: kristina.terheiden@iws.uni-stuttgart.de.
Water Res ; 185: 116182, 2020 Oct 15.
Article em En | MEDLINE | ID: mdl-32763530
ABSTRACT
Biofilm activities and their interactions with physical, chemical and biological processes are of great importance for a variety of ecosystem functions, impacting hydrogeomorphology, water quality and aquatic ecosystem health. Effective management of water bodies requires advancing our understanding of how flow influences biofilm-bound sediment and ecosystem processes and vice-versa. However, research on this triangle of flow-biofilm-sediment is still at its infancy. In this Review, we summarize the current state of the art and methodological approaches in the flow-biofilm-sediment research with an emphasis on biostabilization and fine sediment dynamics mainly in the benthic zone of lotic and lentic environments. Example studies of this three-way interaction across a range of spatial scales from cell (nm - µm) to patch scale (mm - dm) are highlighted in view of the urgent need for interdisciplinary approaches. As a contribution to the review, we combine a literature survey with results of a pilot experiment that was conducted in the framework of a joint workshop to explore the feasibility of asking interdisciplinary questions. Further, within this workshop various observation and measuring approaches were tested and the quality of the achieved results was evaluated individually and in combination. Accordingly, the paper concludes by highlighting the following research challenges to be considered within the forthcoming years in the triangle of flow-biofilm-sediment i) Establish a collaborative work among hydraulic and sedimentation engineers as well as ecologists to study mutual goals with appropriate methods. Perform realistic experimental studies to test hypotheses on flow-biofilm-sediment interactions as well as structural and mechanical characteristics of the bed. ii) Consider spatially varying characteristics of flow at the sediment-water interface. Utilize combinations of microsensors and non-intrusive optical methods, such as particle image velocimetry and laser scanner to elucidate the mechanism behind biofilm growth as well as mass and momentum flux exchanges between biofilm and water. Use molecular approaches (DNA, pigments, staining, microscopy) for sophisticated community analyses. Link varying flow regimes to microbial communities (and processes) and fine sediment properties to explore the role of key microbial players and functions in enhancing sediment stability (biostabilization). iii) Link laboratory-scale observations to larger scales relevant for management of water bodies. Conduct field experiments to better understand the complex effects of variable flow and sediment regimes on biostabilization. Employ scalable and informative observation techniques (e.g., hyperspectral imaging, particle tracking) that can support predictions on the functional aspects, such as metabolic activity, bed stability, nutrient fluxes under variable regimes of flow-biofilm-sediment.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Sedimentos Geológicos Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Sedimentos Geológicos Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2020 Tipo de documento: Article