Your browser doesn't support javascript.
loading
Protein reliability analysis and virtual screening of natural inhibitors for SARS-CoV-2 main protease (Mpro) through docking, molecular mechanic & dynamic, and ADMET profiling.
Kapusta, Karina; Kar, Supratik; Collins, Jasmine T; Franklin, Latasha M; Kolodziejczyk, Wojciech; Leszczynski, Jerzy; Hill, Glake A.
Afiliação
  • Kapusta K; Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
  • Kar S; Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
  • Collins JT; Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
  • Franklin LM; Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
  • Kolodziejczyk W; Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
  • Leszczynski J; Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
  • Hill GA; Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS, USA.
J Biomol Struct Dyn ; 39(17): 6810-6827, 2021 10.
Article em En | MEDLINE | ID: mdl-32795148
ABSTRACT
Due to an outbreak of COVID-19, the number of research papers devoted to in-silico drug discovery of potential antiviral drugs is increasing every day exponentially. Still, there is no specific drug to prevent or treat this novel coronavirus (SARS-CoV-2) disease. Thus, the screening for a potential remedy presents a global challenge for scientists. Up to date over a hundred crystallographic structures of SARS-CoV-2 Mpro have been deposited to Protein Data Bank. With many known proteins, the demand for a reliable target has become higher than ever, so as the choice of an efficient computational methods. Therefore, in this study comparative methods have been used for receptor-based virtual screening, targeting 9 selected structures of viral Mpro. Reliability analyses followed by re-docking of the specific co-crystallized ligand provided the best reproductivity for structures with PDB ID 6LU7, 6Y2G and 6Y2F. The influence of crystallographic water on an outcome of a virtual screening against selected targets was also investigated. Once the most reliable targets were selected, the library of easy purchasable natural compounds were retrieved from the MolPort database (10,305 compounds) and docked against the selected Mpro proteins. To ensure the efficiency of the selected compounds, binding energies for top-15 hit ligands were calculated using Molecular Mechanics as well as their absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties were predicted. Based on predicted binding energies and toxicities, top-5 compounds were selected and subjected to Molecular Dynamics simulation and found to be stable in complex to act as possible inhibitors for SARS-CoV-2. Communicated by Ramaswamy H. Sarma.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Simulação de Dinâmica Molecular / COVID-19 Tipo de estudo: Diagnostic_studies / Prognostic_studies / Screening_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Simulação de Dinâmica Molecular / COVID-19 Tipo de estudo: Diagnostic_studies / Prognostic_studies / Screening_studies Limite: Humans Idioma: En Ano de publicação: 2021 Tipo de documento: Article