Your browser doesn't support javascript.
loading
Microfluidic Synthesis of Hybrid TiO2-Anisotropic Gold Nanoparticles with Visible and Near-Infrared Activity.
Marelli, Marcello; Bossola, Filippo; Spinetti, Gaia; Sangalli, Elena; Santo, Vladimiro Dal; Psaro, Rinaldo; Polito, Laura.
Afiliação
  • Marelli M; National Research Council, CNR-SCITEC, Via G. Fantoli 16/15, Milan 20138, Italy.
  • Bossola F; National Research Council, CNR-SCITEC, Via C. Golgi 19, Milan 20133, Italy.
  • Spinetti G; IRCCS MultiMedica, Via G. Fantoli 16/15, Milan 20138, Italy.
  • Sangalli E; IRCCS MultiMedica, Via G. Fantoli 16/15, Milan 20138, Italy.
  • Santo VD; National Research Council, CNR-SCITEC, Via C. Golgi 19, Milan 20133, Italy.
  • Psaro R; National Research Council, CNR-SCITEC, Via C. Golgi 19, Milan 20133, Italy.
  • Polito L; National Research Council, CNR-SCITEC, Via G. Fantoli 16/15, Milan 20138, Italy.
ACS Appl Mater Interfaces ; 12(34): 38522-38529, 2020 Aug 26.
Article em En | MEDLINE | ID: mdl-32805968
Anisotropic gold nanoparticles (AuNPs), with their unique physical and optical properties, are emerging as smart and key nanomaterials and are being exploited in many crucial fields. To further improve their range of action, anisotropic AuNPs have been coupled with semiconductors, mainly TiO2 (titania), receiving great interest as powerful platforms both in biomedicine and in catalytic applications. Such hybrid nanoparticles show new properties that arise from the synergic action of the components and rely on NP size, morphology, and arrangement. Therefore, continuous advances in design and fabrication of new hybrid titania@gold NPs (TiO2@AuNPs) are urgent and highly desirable. Here, we propose an effective protocol to produce multibranched AuNPs covered by a controlled TiO2 thin layer, exploiting a one-pot microfluidic process. The proposed method allows the in-flow and reliable synthesis of titania-functionalized-anisotropic gold nanoparticles by avoiding the use of toxic surfactants and controlling the titania shell formation. TiO2@AuNPs have been fully characterized in terms of morphology, stability, and biocompatibility, and their activity in photocatalysis has been tested and verified.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2020 Tipo de documento: Article