Your browser doesn't support javascript.
loading
Overexpression of MdATG18a enhances alkaline tolerance and GABA shunt in apple through increased autophagy under alkaline conditions.
Li, Yuxing; Liu, Chenlu; Sun, Xun; Liu, Boyang; Zhang, Xiuzhi; Liang, Wei; Huo, Liuqing; Wang, Peng; Ma, Fengwang; Li, Cuiying.
Afiliação
  • Li Y; State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
  • Liu C; State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
  • Sun X; State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
  • Liu B; State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
  • Zhang X; State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
  • Liang W; State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
  • Huo L; State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
  • Wang P; State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
  • Ma F; State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
  • Li C; State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
Tree Physiol ; 40(11): 1509-1519, 2020 10 29.
Article em En | MEDLINE | ID: mdl-32816019
ABSTRACT
Soil alkalization affects apple production in northwest China. Autophagy is a highly conserved degradative protein pathway in eukaryotes. Autophagy in plants can be activated by various abiotic factors. We previously identified the positive role of the autophagy-related gene MdATG18a in drought, nitrogen deficiency and resistance to Diplocarpon mali infection in apple. However, it is still unclear whether ATG18a is related to alkaline stress. In this study, we used hydroponic culture to simulate alkaline stress and found that the overexpression of MdATG18a significantly improved the tolerance of apple to alkaline stress. The overexpression of MdATG18a increased biomass, photosynthetic rate and antioxidant capacity of transgenic plants compared with wild-type plants under alkaline stress. The overexpression of MdATG18a promoted γ-aminobutyric acid (GABA) shunt via an increase in glutamate (GABA precursor) and GABA contents and upregulation of GABA shunt-related genes. In addition, the overexpression of MdATG18a significantly upregulated the expression of other core ATG genes and increased the formation of autophagosomes under alkaline stress. In conclusion, these results suggest that the overexpression of MdATG18a in apple enhances alkaline tolerance and the GABA shunt, which may be owing to the increase in autophagic activity.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Malus Tipo de estudo: Prognostic_studies País como assunto: Asia Idioma: En Ano de publicação: 2020 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Malus Tipo de estudo: Prognostic_studies País como assunto: Asia Idioma: En Ano de publicação: 2020 Tipo de documento: Article